
DEPARTMENT OF MATHEMATICS, COMPUTER SCIENCE AND PHYSICS

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND CYBERSECURITY

MASTER THESIS IN

INTERNATIONAL MASTER DEGREE IN ARTIFICIAL INTELLIGENCE

CYBERSECURITY

Gröbner Basis Cryptanalysis and its
Application to Arithmetization Oriented

Symmetric Primitives

CANDIDATE

Luca Campa

SUPERVISOR

Prof. Marino Miculan

CO-SUPERVISOR

Prof. Arnab Roy

CO-SUPERVISOR

Prof. Elisabeth Oswald

Academic Year 2023-2024

Institute Contacts
Dipartimento di Scienze Matematiche, Informatiche e Fisiche
Università degli Studi di Udine
Via delle Scienze, 206
33100 Udine — Italia
+39 0432 558400
https://www.dmif.uniud.it/

© 2024 Luca Campa
This work is shared under the Creative Commons 4.0 License Attribution-NonCommercial-ShareAlike.

https://www.dmif.uniud.it/

Acknowledgements

It was a great pleasure to write this thesis after a fantastic period at the University of Innsbruck.

Therefore, I would like to thank the Security and Privacy Lab for hosting me and, in particular, Prof.

Arnab Roy for his guidance and priceless suggestions. Moreover, a big thank you to Prof. Marino

Miculan who, with his guidance and passion for his work, represents an important example to follow

and the reason why I decided to attend the Master Degree at the University of Udine. In addition,

I cannot forget Sandro Campigotto, the professor (now a friend) who gave me the solid mathematical

foundations that allowed me to increase my knowledge and passion in the field of cryptography.

Lastly, I am grateful to my family, in particular to my mother, father and grandmother, who are

perhaps happier than me for this big achievement, for their encouragement and for having raised me with

love and knowledge, and to my girlfriend Sara who, making my life better every day, always supported

and sustained me over these years.

Finally, I would like to thank my friends and, in particular, “CasaUD” for making my journey light

and fun.

Abstract

Newer cryptography designs are gaining more interest in the field of algebraic cryptanalysis due to their

Arithmetization-Oriented (AO) nature. As a consequence, their main threat comes from the application

of algebraic cryptanalysis techniques. One of them is the so-called Gröbner basis cryptanalysis which

requires mathematical foundations from algebraic geometry. In this thesis we cover all the necessary

theoretical concepts and their immediate application in the context of computational algebra. On

top of this, we present the structure of a Gröbner basis cryptanalysis and an in-depth application on

Anemoi, one of the recently proposed Arithmetization-Oriented primitives, based on our new polynomial

modelling called ACICO. The new model permits to precisely define the complexity of the Gröbner basis

computation step for Anemoi, and to show that the security of Anemoi should not rely on it, no matter

the number of branches. Afterwards, we present a complexity analysis with respect to the problem of

computing the variety (the solutions) of the system by using different approaches and, in particular, by

exploiting the Wiedemann algorithm which permits to challenge the security of full-round instances.

Moreover, the refined Gröbner basis cryptanalysis methodology and the considerations on the modelling

choices can be extended to other AO primitives.

Contents

1 Introduction 1

1.1 Outline . 3

2 Mathematical foundations 5

2.1 Affine Varieties . 5

2.2 Ideals . 6

2.3 Polynomials: different view points . 8

2.4 Gröbner basis . 11

2.5 Regular systems of polynomials . 14

2.5.1 Variables in Noether position . 15

3 Computational algebra 17

3.1 Gröbner basis computation . 17

3.1.1 Buchberger’s algorithm . 17

3.1.2 F4 . 20

3.1.3 F5 . 24

3.2 Gröbner basis conversion: from graded to LEX monomial order 28

3.2.1 FGLM . 29

3.2.2 SparseFGLM . 30

3.3 Finding the variety . 34

3.3.1 Change of order . 34

3.3.2 Resultant technique . 34

3.3.3 Eigenvalue methods . 36

3.4 On the computation of the multiplication matrices . 38

4 Gröbner basis cryptanalysis 41

4.1 Computing a Gröbner basis . 42

4.2 Obtaining univariate polynomials . 43

4.2.1 FGLM . 43

4.2.2 Eigenvalue method . 44

4.3 Factoring polynomials or root finding . 45

5 Application to ANEMOI 47

5.1 The primitive . 47

5.2 Anemoi rounds . 49

5.3 Modes of operation . 49

5.4 Modelling phase . 50

5.4.1 PCICO Model . 51

5.4.2 FCICO Model . 53

5.4.3 ACICO model . 55

5.5 Gröbner basis cryptanalysis against Anemoi . 56

5.5.1 Gröbner basis for Anemoi . 57

5.5.2 Univariate polynomial finding . 59

viii Contents

5.5.3 Polynomial Factorization or Root Finding . 62
5.6 Theoretical results . 64

5.6.1 Gröbner basis computation complexity . 64
5.6.2 Univariate polynomial finding complexities . 64
5.6.3 Design choices (conservative approach) . 69
5.6.4 Suggested number of rounds . 70

5.7 Experimental results . 70

6 Conclusions 75

A FreeLunch attack against Anemoi 77
A.1 Freelunch system attack methodology . 77
A.2 Anemoi algebraic cryptanalysis through Freelunch systems 78

A.2.1 Weights for pi,r . 78
A.2.2 Weights for xi,N+1 . 80
A.2.3 Forcing the last equation to be in FreeLunch form 80
A.2.4 Impossibility to extend the technique to more than 2 branches 81

B Additional Algebraic cryptanalysis methods 83
B.1 Interpolation attack . 83
B.2 Higher-order differential attack . 84

List of Tables

5.1 Number of rounds for Anemoi [8] . 49
5.2 Complexity of the existing Gröbner Basis attacks for l = 1. The number of rounds is

given in brackets. The two articles used different values of ω. 66
5.3 Complexity given by linSeq, ldI(Z + log(dI)), with the Conjecture 1 on the sparsity

level of the matrices. The first line shows the complexity of the algorithm with respect to
the number of rounds of Anemoi and the second line shows the number of rounds whose
complexity is below the target security level. 67

5.4 Complexity given by polyDet: dωI , for ω = 2.8074. The first line shows the complexity of
the algorithm with respect to the number of rounds of Anemoi, the second line shows the
number of rounds whose complexity is below the target security level. 68

5.5 Complexity given by deterministic SparseFGLM: nv · dωI · log(dI), for ω = 2.8074. The
first line shows the complexity of the algorithm with respect to the number of rounds of
Anemoi, the second line shows the number of rounds whose complexity is below the target
security level. 68

5.6 Complexity given by deterministic SparseFGLM: nv ·dωI · log(dI), for ω = 2. The first line
shows the complexity of the algorithm with respect to the number of rounds of Anemoi,
the second line shows the number of rounds whose complexity is below the target security
level. 69

5.7 Complexity given by polyDet: dωI , for ω = 2. The first line shows the complexity of the
algorithm with respect to the number of rounds of Anemoi, the second line shows the
number of rounds whose complexity is below the target security level. 69

5.8 Minimum number of rounds required for Anemoi: SparseFGLM (1st line), polyDet (2nd

line) and linSeq (3rd line) . 70
5.9 For l = 1, 2, 3, the GDRL (if α = 3) and GWDRL

(if α = 5, 7, 11) computation time in
millisecond and the solving degree dsolv. We present the GB results with respect to the
number of rounds of Anemoi (in brackets), but we were able to compute the Gröbner basis
for more than 100 rounds. 71

5.10 For p = 1481823929, l = 1, the computation times for the 3 steps in GB cryptanalysis are
listed. As dI grows, the SparseFGLM, polyDet and Wiedemann algorithm fails due to
memory constraint. For α = 3 the structure of the GB was obtained with DRL monomial
ordering, whilst for α = 5, 7, 11 the structure of the GB was obtained with WDRL. . . . 73

5.11 For p = 1481823929, l = 2 and α = 3, the computation times for the 3 steps in GB
cryptanalysis are listed. For α = 3 the structure of the GB was obtained with DRL
monomial ordering, whilst for α = 5, 7, 11 the structure of the GB was obtained with
WDRL. 74

5.12 For p = 1481823929, l = 3 and α = 3, the computation times for the 3 steps in GB
cryptanalysis are listed. For α = 3 the structure of the GB was obtained with DRL
monomial ordering. 74

List of Figures

1.1 Outline of the thesis. § denotes the sections. The green boxes highlight the mandatory
sections. The red dashed line denotes that the starting point is required to understand
the end point. 3

5.1 Non-linear layer of Anemoi(l > 1) . 47
5.2 Flystel evaluation (left) and verification (right) circuit representations in Anemoi [29]. . 49
5.3 Sponge mode: f is the permutation function, r stands for the rate, c for the capacity.

Image taken and modified from [26]. 50
5.4 JIVE mode: f is the permutation function, x1, . . . , xl are the inputs and out is the

output [8]. 50

1
Introduction

In algebraic geometry, solving a system of simultaneous equations is a well-known problem which gained

further interests in the recent years due to its application to the security analysis of modern ciphers.

Cryptanalysis of ciphers based on “solving a system of equations” in a number of unknowns was already

considered by Claude E. Shannon [34]. However, because this system solving strategies did not pose any

security threat to the security of modern block ciphers like AES [9, 10, 42], the cryptanalytic impact

of such techniques remained unexplored, until recently. Newer cryptography designs, such as MPC

(Multiparty Computation), FHE (Fully Homomorphic Encryption) and ZK-friendly (Zero-knowledge)

primitives, are gaining more interest in the field of algebraic cryptanalysis due to their Arithmetization-

Oriented (AO) nature. One of the main techniques that is still under exploration is the Gröbner basis

(GB) cryptanalysis which represents one of the main security threats.

The main aim of Gröbner basis cryptanalysis is to solve a system of polynomials for obtaining the

values of a set of target variables. For example, in case of a hash function the target variables can be the

input to the hash function. Thus, obtaining the value of this target variable means finding a pre-image

of the hash function. The common modus operandi requires to model the cryptographic function (e.g.

permutation) as a system of polynomials, say F , over a suitable finite field K. Next, a Gröbner basis G

w.r.t a suitable monomial ordering is computed for the ideal I = ⟨F⟩, generated by F . Finally, one can

solve the polynomial system defining the Gröbner basis G to obtain the values of the target variables.

However, even in this last step, several methods can be applied depending on the inner structure and on

the properties of the considered system. Computing a Gröbner basis particularly facilitates the process

of solving the system of polynomials in it. In particular, one can employ basis conversion techniques to

obtain a favourable set of polynomials that is easy to solve, or eigenvalue methods to obtain univariate

polynomial (possibly for each target variables).

An important outcome that emerges from the GB analysis (in both previous and our results) of the

AO primitives is that their security against GB analysis is not well-defined and, in particular, it is not

always determined by the high computational complexity of the Gröbner basis computation step. AO

primitives like MiMC, GMiMC, Poseidon etc. do not provide useful bound on the complexity of the GB

computation step. Hence, their security parameters should rely upon other steps of the process.

Giving the exact complexity of Gröbner basis computation is a non-trivial problem. Previous works

rely on row reduction complexity bound of Macaulay matrices (and it is a function of the solving degree

2 Chapter 1 — Introduction

which is the highest degree reached during the GB computation). It is well known that the bound is

loose, and often the experimental complexity shows or indicates better bound. Thus, as said before,

from both cryptanalytic and design perspectives it does not represent a good choice for defining the

security of the analysed primitive. M. Steiner [38] tried to tighten the GB theoretical complexity by

mathematically proving the solving degree bound for iterated polynomial systems and, in particular,

for the attacks on MiMC, Feistel-MiMC, Feistel-MiMC-Hash, Hades and GMiMC, showing the relation

between the fall degree and the Castelnuovo-Mumford regularity. Moreover, as shown by [1], the designers

of symmetric-key primitives should pay particular attention to the algebraic structure of their cipher

and its components, due to the fact that there can be a clever representation of those components which

can lead to experimental complexities far better that the theoretical estimates. An example of how the

algebraic structure of a cipher can be exploited is given again in [1], where the authors show how the

modelling choices matter e.g. the choice of the variables and the field to operate with. In this thesis we

address this issues by providing a new model for Anemoi called ACICO, thanks to which we compute

the exact complexity of the GB computation w.r.t. the Buchberger’s algorithm. As a result, a threat

model should not consider the GB computation as a metric for defining the security parameters of a

primitive.

One of the main objectives in GB cryptanalysis is to obtain a “nice” set of polynomials (from the

Gröbner basis G of I) that is convenient to solve. This step has a significant complexity and an important

role in GB cryptanalysis. Moreover, differently from the GB computation, it is based on well-defined

complexity bounds that can represent a good metric for the definition of the cipher’s security parameters.

After computing the Gröbner basis G, one may choose to employ basis conversion techniques like

FGLM to obtain a GB G′, typically w.r.t lexicographic monomial ordering. The only requirement is

that I is a zero-dimensional ideal. The main advantage of this basis conversion is that, if I meets some

conditions, G′ consists of one univariate polynomial, say g(x), and other polynomials which are of the

form yi − fi(x) for each variable yi. This means that the solution of the variables yi can be obtained

by substituting the solutions of g(x) = 0. Usually, obtaining such form, which is commonly referred

to as shape form, requires the condition that the ideal I = ⟨F⟩ is a radical ideal. Alternatively, if

the radicality condition is not met, one has to show that the GB G′ of I w.r.t lexicographic monomial

ordering consists of polynomials in such nice form. Checking that condition for proving the shape form

for the Gröbner basis of I is often omitted or concluded from experimental results in GB cryptanalysis

of AO primitives.

When it is not possible to confirm the conditions for applying basis conversion techniques like FGLM

one can resort to eigenvalue method. The main objective of this technique is to obtain a univariate

polynomial corresponding to each target variable and find at least one solution to the polynomial (if

it is not irreducible). An additional advantage of this technique is that it can sometimes be more

efficient than the basis conversion technique. Indeed, we will show that using probabilistic version of

this eigenvalue method is more efficient than the technique used in [3, 29].

In this thesis we will discuss what are the possible paths to follow, and what are the main advantages

gained by each one in the context of Gröbner basis cryptanalysis.

1.1 Outline 3

1.1 Outline

Now, we provide the outline of the thesis. In particular, the thesis is organized in 4 chapters: Mathemati-

cal foundations, Computational algebra, Gröbner basis cryptanalysis and Application to Anemoi. Figure

1.1 depicts a schematic overview of the sections and advises the reader about the mandatory sections

and dependencies that are necessary to understand the main objective of this thesis: the application of

GB cryptanalysis to Anemoi.

Figure 1.1: Outline of the thesis. § denotes the sections. The green boxes highlight the mandatory
sections. The red dashed line denotes that the starting point is required to understand the end point.

4 Chapter 1 — Introduction

Chapter 2 deals with mathematical fundamentals. We provide an in-depth explanation of the tools

and concepts needed to understand the reasons under the application of certain algorithms. A quick

example is the notion of ideal we used above.

Chapter 3 brings the reader to the direct application of the mathematical concepts introduced

in Chapter 2. For the first two steps of the GB cryptanalysis methodology, we present the possible

algorithms, their complexities and the main advantages. Furthermore, sometimes we require some

additional theoretical concepts which will be introduced just before the presentation of the corresponding

algorithm.

Chapter 4 takes all the ingredients discussed in Chapter 3 and tries to outline a walkthrough of

the possible combinations of those ingredients in order to make GB cryptanalysis applicable and easily

reproducible by the reader.

Finally, Chapter 5 presents the application of the methodology to one of the most recent AO primitive

proposals: Anemoi. Firstly, we describe the primitive and its components, then we present our GB

analysis and its results. Recall one of the main steps in GB cryptanalysis: modelling the primitive as a

set of polynomials. Choosing a “good” model is necessary to reduce the complexity of the subsequent

procedures. Here, we present a new modelling choice for Anemoi, which we called ACICO. As you will

discover, this model makes the GB computation step “negligible” w.r.t the other steps, confirming that

making the security of the primitive relying upon the GB computation does not represent a good design

choice. Secondly, we show how to improve the existing attack complexities by adopting the Wiedemann

algorithm. Finally, we demonstrate our attack strategies with some experimental results, showing that

we are able not only to attack more rounds with respect to previous results, but also to apply the attack

to more than 2 Anemoi branches.

At the end of the thesis we give the reader more information about the algebraic cryptanalysis

methodologies and one of the most recent applications against Anemoi. Appendix A presents one of the

most recent attacks against Anemoi with 2 branches. Moreover, we show that the methodology used

by [3] (forcing Anemoi with 2 branches to be a FreeLunch system) is not applicable to the multi-branches

case. Appendix B briefly discuss two more algebraic cryptanalysis methodologies: interpolation attacks

and Higher-order differential attacks.

2
Mathematical foundations

In this chapter we present the basic mathematical knowledge required to follow the inner working of

the algebraic cryptanalysis section. We’ll start from the basic definitions to more advance theorems and

applications.

We use K to denote a field and R := K[x1, . . . , xn] to denote the polynomial ring over K in the variables

x1, . . . , xn. When K = Fp the ring is denoted as Rp. Due to ease of notation, at times we use the notation

K[x] to denote the ring where the variables xi are made clear in the corresponding context. Most of the

time K = Fp where p > 2 is possibly a large prime, unless stated otherwise. We use LMk(p) to denote

the k-th leading monomial of the polynomial p with respect to a certain monomial order which will be

clear from the context. In addition, when we refer to the first leading monomial, we simply use LM(p).

Sometimes we also use LC(p) ∈ K to denote the leading coefficient of the polynomial p and LT (p) to

denote the leading term of p where LT (p) = LC(p) · LM(p). Finally, |B| will denote the cardinality of

the set B. Throughout the thesis, with abuse of notation, we will use deg(x) to denote both the degree

of the variable x, both the degree of the polynomial x. The correct interpretation will be clear from the

context. The following definitions are mainly taken from [15, 16].

2.1 Affine Varieties

Definition 1 (Affine Variety). Let f1, . . . , fs ∈ K[x1, . . . , xn]. Then, the set

V(f1, . . . , fs) = {(a1, . . . , an) ∈ Kn | fi(a1, . . . , an) = 0, 1 ≤ i ≤ s}

is called the affine variety defined by the polynomials f1, . . . , fs.

From a geometrical point of view the affine variety is the set of points (in the n-th dimensional affine

space) such that the polynomials fi are evaluated to 0. As a simple example, let us consider one instance

of the line equation y −mx− q = 0.

Example 1. Let us consider the equation y − x+ 1 which is represented by the following graph:

6 Chapter 2 — Mathematical foundations

−4 −2 2 4

−3

−2

−1

1

2

3

y
−
x
+
1
=
0

x

y

All the points that lay on the represented line are the affine variety defined by y − x+ 1.

Example 2. Now, let us consider two polynomials, a circle x2 + y2 − 1 = 0 and a parabolic curve

x2 + 2y − 4 = 0. The points in their intersection ((−2, 0), (0, 2), (2, 0)) represent the affine variety

defined by the two equations.

−4 −2 2 4

−3

−2

−1

1

2

3

x

y

Lemma 1. If V = V(f1, . . . , fm),W = V(g1, . . . , gn) are two affine varieties, then also V ∩ W and

V ∪W are affine varieties. In particular:

V ∩W = V(f1, . . . , fm, g1, . . . , gn)

V ∪W = V(figj |1 ≤ i ≤ m, 1 ≤ j ≤ n)

Example 3. Recall Example 2. The affine variety V(x2 + y2 − 1, x2 + 2y − 4) is the intersection of two

bigger affine varieties, in particular:

V(x2 + y2 − 1, x2 + 2y − 4) = V(x2 + y2 − 1) ∩ V(x2 + 2y − 4).

2.2 Ideals

Definition 2 (Ideal). A subset I ⊆ R is an ideal if it satisfies the following conditions:

• 0 ∈ I

2.2 Ideals 7

• if f, g ∈ I, then f + g ∈ I

• if f ∈ I and h ∈ K[x1, . . . , xn], then hf ∈ I

Let f1, . . . , fs be polynomials in K[x1, . . . , xn], then the set

⟨f1, . . . , fs⟩ =

{︄
s∑︂
i=1

hifi | h1, . . . , hs ∈ K[x1, . . . , xn]

}︄

is an ideal in R generated by fi for 1 ≤ i ≤ s.

The set of polynomials which defines the ideal is called the generating basis of the ideal. However,

a given ideal can have many different basis. From an algebraic point of view, the ideal is the set of

polynomials which are linear combinations of the polynomials in the generating set (basis). Therefore,

it makes sense to link the concept of ideal to the variety and vice versa.

Definition 3 (Variety of ideal). Let s, n ∈ N and let I = ⟨f1, . . . , fs⟩ be an ideal in K[x1, . . . , xn].

Then, the set

V(I) = V(f1, . . . , fs) := {(a1, . . . , an) ∈ Kn | fi(a1, . . . , an) = 0, 1 ≤ i ≤ s}

is called the affine variety of the ideal I. Moreover, for any field K ⊂ K′, VK′(I) denotes the set of

solutions (a1, . . . , an) over the n-dimensional affine space An(K′). In particular, VK̄(I) denotes the

variety of I over the algebraic closure K̄ of K.

The variety of an ideal is independent of the generating set of polynomials. There could be multiple

sets of polynomials which define the same set of solutions. Therefore, if f1, . . . , fm and g1, . . . , gn are

basis of the same ideal, that is ⟨f1, . . . , fm⟩ = ⟨g1, . . . , gn⟩, then V(f1, . . . , fm) = V(g1, . . . , gn).

Example 4. Given the ideal I = ⟨f1 = x4 +2x2 +2y2 − 17, f2 = 2x4 +4x2 +3y2 − 33⟩ ⊂ R[x, y], we can

find another basis which helps us to determine its variety V(I).
In this simple example, 2f1 − f2 = 0 gives us the polynomial y2 − 1 = 0. From it we obtain the

polynomial involving only the variable x: x4 + 2x2 − 15 = 0.

The ideal ⟨x4+2x2−15, y2−1⟩ = ⟨f1, f2⟩, therefore their variety is the same. It is straightforward to

notice that finding the solutions of the new basis polynomials is easier. The roots of y2 − 1 are y = ±1.
As regards x4 +2x2− 15, it can be factorized in (x2 +5)(x2− 3) where the possible roots are x = ±

√
3.

The variety of the ideal is then given by the couples (±
√
3,±1).

In the same way we can define the ideal of the variety.

Definition 4 (Ideal of variety). If V ∈ Kn is an affine variety, then I(V) ⊆ K[x1, . . . , xn] where

I(V) = {f ∈ K[x1, . . . , xn] | f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V}

is an ideal, and we call it the ideal of the variety.

Taking all together, given an ideal I, the complexity of defining V(I) can differ depending on the

chosen generating basis. Moreover, the ability to change the basis (meaning the view point) of the ideal

8 Chapter 2 — Mathematical foundations

could lead to an easier way of computing the variety and then the solutions of the system of equations

defined by the generating set. One important class of these ”nice” sets is the class of Gröbner Basis

which we are going to analyse in the next sections. An immediate question that can rise from the above

definitions is whether ⟨f1, . . . , fm⟩
?
= I(V(f1, . . . , fm)). For arbitrary fields the relation between the ideal

generated by the set of polynomials and the ideal generated by their affine variety is not well-defined.

Example 5 shows a case where the inequality holds. However, for algebraically closed fields1 this relation

is explained by the Nullstellensatz Theorem, in particular

⟨f1, . . . , fm⟩ = I(V(f1, . . . , fm)).

On the other hand, the ideal of a variety always uniquely determine the variety.

Example 5. Let J = ⟨x4, y2⟩ be an ideal in C[x, y]. The equations x4 = 0 and y2 = 0 imply that

V(J) = {(0, 0)}. Now the question is: if we compute the ideal of the variety {(0, 0)}, will it be J?

Otherwise, what is the relation between the new ideal and J?

It can be easily proven that I({(0, 0)}) = ⟨x, y⟩. Hence, G = I(V(J)) = ⟨x, y⟩ ̸= J . Now, what is

the relation between G and J?

We can notice that G is larger than J due to the fact that x ∈ G = ⟨x, y⟩, but x /∈ J = ⟨x4, y2⟩.
Indeed, each polynomial in J must have the form h1x

4+h2y
2 where h1, h2 ∈ C[x, y], meaning that each

polynomial in J should have total degree at least 2: x does not satisfy this condition.

As a result, we can conclude that J ⊂ G, and the equality does not hold.

Proposition 1. Let V,W be two affine varieties, then

V ⊆W ⇐⇒ I(V) ⊇ I(W)

V =W ⇐⇒ I(V) = I(W)

Before going to the definition of Gröbner Basis and how they can be used to describe the ideals and

their properties, it is worth describing how the polynomials can be represented and used to change the

complexity of some operations related to ideals and varieties.

2.3 Polynomials: different view points

One of the crucial operation in defining ideals is the polynomial division. Since the secondary school,

we are used to compute the division algorithm between univariate polynomials and one of the main

properties that we implicitly apply is the term ordering. When computing the division we sort the

terms depending on the degree of the variable in descending order. What happens with multivariate

polynomials?

The multivariate polynomial division strongly depends on the term order, meaning that the result

could be (and often is) completely different. There exist multiple ways of sorting the terms in a poly-

nomial, and we are going to list (also through examples) some of them. Generically speaking, all the

monomial (term) orderings can be described by the following definition.

1A field K is algebraically closed if every non-constant polynomial in K[x] has a root in K. Given a generic field K, we
define its algebraic closure as K.

2.3 Polynomials: different view points 9

Definition 5 (Monomial Ordering). A monomial ordering ≺ on K[x1, . . . , xn] is a relation ≺ on

Zn≥0, or rather a relation on the set of monomials xα where α ∈ Zn≥0 satisfying the following conditions:

• ≺ is a total (or linear) order on Zn≥0

• if α ≺ β and γ ∈ Zn≥0, then α+ γ ≺ β + γ

• ≺ is a well-ordering on Zn≥0, meaning that every non empty subset of Zn≥0 has a smallest element

under the relation ≺.

What follows is a brief description of what are the well-known monomial orderings:

• Lexicographic (LEX)

• Reverse lexicographic (RLEX)

• Degree lexicographic (DL)

• Degree reverse lexicographic (DRL)

• Elimination order (Elim)

• Weighted order (the general one)

For each of them we will provide an example of how they look like with respect to the following

multivariate polynomial

f = x3z − y3 + xy2z − xy + 1

where the lexicographic order of the chosen variables is x > y > z.

Definition 6 (Lexicographic Order). Let α = (α1, . . . , αn) and β = (β1, . . . , βn) be in Zn≥0. We say

α >lex β if the leftmost nonzero entry of the vector difference α−β ∈ Zn is positive. We say xα >lex x
β

if α >lex β.

Example 6. We will sort the monomials in f w.r.t the lexicographic order. As an example, let us take

x3z and xy2z into account. Their degrees are represented by the vectors α = (3, 0, 1) and β = (1, 2, 1).

From the vector difference (3, 0, 1)− (1, 2, 1) = (2,−2, 0) we can notice that the leftmost nonzero entry

is positive, therefore x3z >LEX xy
2z.

As a result, the monomials in f would be sorted as: x3z + xy2z − xy − y3 + 1

Definition 7 (Reverse Lexicographic Order). Let α = (α1, . . . , αn) and β = (β1, . . . , βn) be in

Zn≥0. We say α >revlex β if the rightmost nonzero entry of the vector difference α− β ∈ Zn is negative.

We say xα >revlex x
β if α >revlex β.

Example 7. We will sort the monomials in f w.r.t the reverse lexicographic order. As an example, let us

take 1 and xy2z into account. Their degrees are represented by the vectors α = (0, 0, 0) and β = (1, 2, 1).

From the vector difference (0, 0, 0) − (1, 2, 1) = (−1,−2,−1) we can notice that the rightmost nonzero

entry is negative, therefore 1 >RLEX xy
2z.

As a result, the monomials in f would be sorted as: +1− xy − y3 + x3z + xy2z

10 Chapter 2 — Mathematical foundations

Definition 8 (Degree Lexicographic Order). Let α, β ∈ Zn≥0. We say α >DL β if

|α| =
n∑︂
i=1

αi > |β| =
n∑︂
i=1

βi, or |α| = |β| and α >lex β

We say xα >DL x
β if α >DL β.

Example 8. We will sort the monomials in f w.r.t the degree lexicographic order. As an example, let

us take x3z and xy2z into account. Their degrees are represented by the vectors α = (3, 0, 1) and

β = (1, 2, 1).
∑︁n

i=1 αi = 4 and
∑︁n

i=1 βi = 4, therefore, we need to use the lexicographic order to

determine how they must be sorted. As shown by Example 6, x3z >LEX xy
2z.

As a result, the monomials in f would be sorted as: x3z + xy2z − y3 − xy + 1

Definition 9 (Degree Reverse Lexicographic Order). Let α, β ∈ Zn≥0. We say α >DRL β if

|α| =
n∑︂
i=1

αi > |β| =
n∑︂
i=1

βi, or |α| = |β| and α >revlex β

We say xα >DRL x
β if α >DRL β.

Example 9. We will sort the monomials in f w.r.t the degree reverse lexicographic order. As an example,

let us take x3z and xy2z into account. Their degrees are represented by the vectors α = (3, 0, 1) and

β = (1, 2, 1).
∑︁n

i=1 αi = 4 and
∑︁n

i=1 β = 4, therefore, we need to use the reverse lexicographic order to

determine how they must be sorted. Recall Example 7, x3z >RLEX xy
2z.

As a result, the monomials in f would be sorted as: x3z + xy2z − y3 − xy + 1

Definition 10 (Elimination order). A monomial ordering on K[x1, . . . , xn, y1, . . . , ym] is an elim-

ination ordering for x1, . . . , xn if

f ∈ K[x1, . . . , xn, y1, . . . , ym] ∧ LM(f) ∈ K[y1, . . . , ym]→ f ∈ K[y1, . . . , ym]

Example 10. The elimination order is used in conjunction with one of the previous monomial orderings.

In particular, we say that ≺ is an elimination order for variable x if and only if x > ym and x > zm

for all m ≥ 0. The monomial ordering for the remaining variables y, z is one of the previously described

(LEX, RLEX, . . .).

This means that the variable x must be involved in all the monomials at the beginning of the

polynomial: x3z + xy2z − xy − y3 + 1.

Moreover, it can never happen that a monomial involving the variable x is between two monomials

that does not involve x: y3 + xy + z is impossible.

Every monomial ordering can be defined by a series of weights. Moreover, different monomial

orderings can be combined to exploit different properties.

Definition 11 (Weighted monomial order). Given a weight vector w = (w1, . . . , wn) ∈ Rn≥0, where

2.4 Gröbner basis 11

w1 ̸= 0. We say that w is associated with the monomial ordering ≺, defined by:

n∏︂
i=1

xαi
i ≺

n∏︂
i=1

xβii ⇐⇒

⎧⎨⎩
∑︁n

i=1wiαi >
∑︁n

i=1wiβi∑︁n
i=1wiαi =

∑︁n
i=1wiβi, α ≺M β

where M is another monomial order like LEX, RLEX, etc..

Example 11. Let us define the following weights with respect to x, y, z:

wx = 1, wy = 2, wz = 3.

Moreover, assume that M = RLEX.

As an example, let us take x3z and xy2z into account. Their degrees are represented by the vectors

α = (3, 0, 1) and β = (1, 2, 1). Hence, the weighted sum is given by
∑︁n

i=1wiαi = 6 and
∑︁n

i=1wiβi = 8,

and, as a result, xy2z >WDRL
x3z.

The original polynomial would be rewritten as: xy2z − y3 + x3z − xy + 1

2.4 Gröbner basis

The idea behind the Gröbner basis is to find a unique basis (point of view) of the ideal which can be

used to answer the following questions:

1) ideal description problem: does every ideal have a finite basis?

2) ideal membership problem: given f ∈ K[x1, . . . , xn] and I = ⟨f1, . . . , fs⟩, does f belong to I?

3) solving systems of polynomial equations: finding the variety of the ideal.

Generically, the ideal membership problem can be solved by looking at the remainder of the multivari-

ate polynomial division. The tricky part comes from the fact that the multivariate polynomial division

highly depends on the order of the polynomials within an ideal basis and on the chosen monomial or-

dering. Sometimes, the result is not uniquely determined and that is the reason why we absolutely need

a ”good” representative of the ideal, the Gröbner basis. The following example is taken from [15, Ch.

2, §3, Example 5].

Example 12. Let f1 = xy − 1, f2 = y2 − 1 ∈ K[x, y] with the LEX order. Dividing f = xy2 − x by

F = (f1, f2), the result is

xy2 − x = y(xy − 1) + 0(y2 − 1) + (−x+ y).

With F = (f2, f1), the result of the division by F is:

xy2 − x = x(y2 − 1) + 0(xy − 1) + 0.

From the second result, the zero remainder tells us that f ∈ ⟨f1, f2⟩ even if from the first computation

we obtained a non-zero remainder. As said before, the order of the ”generators” matters.

12 Chapter 2 — Mathematical foundations

The ideal description problem is solved by the Hilbert Basis theorem.

Theorem 1 (Hilbert Basis theorem). Every ideal I ⊆ K[x1, . . . , xn] has a finite generating set. In

other words, I = ⟨g1, . . . , gs⟩ for some g1, . . . , gs ∈ I.

Moreover, we are searching for basis with ”good” properties that can guarantee the uniqueness we

are looking for. This basis are called Gröbner basis.

Definition 12 (Gröbner Basis). Let I = ⟨f1, . . . , fs⟩ be an ideal in K[x1, . . . , xn] and let ≺ be a valid

monomial ordering. A finite subset G = {g1, . . . , gt} of I different from {0} is said to be a Gröbner

Basis (or Standard Basis) w.r.t. ≺ if

⟨LM(g1), . . . , LM(gt)⟩ = ⟨LM(I)⟩

where LM() denotes the leading monomial of a polynomial with respect to ≺.

With Gröbner basis, we are solving the issue given by the order of the generators, as shown in

Example 12. With respect to the monomial ordering, there is not a unique basis. For each monomial

ordering the computed Gröbner basis could be different. Therefore, we will often denote a Gröbner basis

w.r.t to a monomial ordering ≺ as G≺.

Remark 1. Let I ∈ K[x1, . . . , xn] be an ideal and let G = {g1, . . . , gs} be a Gröbner basis for I. Given

f ∈ K[x1, . . . , xn] there is a unique remainder r ∈ K[x1, . . . , xn] with the following properties:

• No term of r is divisible by any of LT (g1), LT (g2), . . . , LT (gs).

• There is g ∈ I such that f = g + r.

The polynomial r is the remainder, and it is unique, no matter how the generators are sorted when

using the division algorithm. Moreover, f can be shown as q1g1+ · · ·+ qsgs+ r where the remainder r is

uniquely determined and the quotients qi depend on how the generators are sorted during the division

algorithm.

Due to ease of notation, we will use f
G
to denote the remainder on division of f by the set G.

Example 13. Given G = {g1 = x + z, g2 = y − z} a Gröbner basis with respect to the LEX monomial

order. Let f = xy be a generic polynomial in K[x, y, z], we are going to compute the division of f by

(g1, g2) and (g2, g1).

1) f = y(x+ z)− z(y − z)− z2

2) f = x(y − z) + z(x+ z)− z2

As previously remarked, the remainder is the same (−z2) whilst the quotients are different.

Fixed a monomial ordering, there exist a unique reduced Gröbner basis.

Definition 13 (Reduced Gröbner Basis). Let G be a Gröbner basis for ideal I ⊂ K[x1, . . . , xn]

with respect to a monomial ordering ≺, if

2.4 Gröbner basis 13

• LC(g) = 1 for all g ∈ G

• for all g ∈ G, no monomial of g lies in ⟨LT (G \ {g})⟩

G is said to be a reduced Gröbner basis.

An important property of reduced Gröbner basis is that the polynomial division modulo a Gröbner

basis yields unique division remainders. Then, if G is a reduced Gröbner basis for the ideal I we are

able to uniquely represent residue classes in the quotient ring R/I. The quotient ring R/I is a K-

vector space, called the quotient space. The basis which defines that quotient space can be finite or

infinite-dimensional. In particular, a standard basis for K[x1, . . . , xn]/I is given by the set of monomials

BI := {Xα | Xα /∈ ⟨LM(I)⟩} = {Xα =
n∏︂
i=1

xαi
i | X

α /∈ ⟨LM(G)⟩}.

Definition 14 (Zero-dimensional Ideal). Let I be a non-zero ideal in K[x1, . . . , xn], let ≺ a valid

monomial ordering and let G be a reduced Gröbner basis for I with respect to ≺. If the quotient space

K[x1, . . . , xn]/I is finite-dimensional, that is

dI = dimK(K[x1, . . . , xn]/I) = |BI | <∞

then I is called Zero-dimensional ideal.

If the quotient space is finite-dimensional, each remainder can be written as vector in the basis

monomials of BI . That means we can define a linear matrix Tj : K[x1, . . . , xn]/I → K[x1, . . . , xn]/I

corresponding to the multiplication by xj for all 1 ≤ j ≤ n.

Definition 15 (Multiplication matrix). Let I be a zero-dimensional ideal in K[x1, . . . , xn], G a

reduced Gröbner basis for I with respect to a monomial ordering ≺ and BI = (e1, . . . , edI) the standard

basis for the quotient space K[x1, . . . , xn]/I, the multiplication matrix Tj of xj is defined by the square

matrix whose i-th vector is represented by the coefficients of the monomials of the basis BI contained in

the reduction of xjei modulo the Gröbner Basis G.

There is a strong connection between zero dimensional ideals, their quotient space and their variety.

In particular, for zero dimensional ideals, the number of solutions to an equation system equals the

dimension of the quotient space (counted with multiplicities). We note that, in general, counting the

number of solutions or finding a good bound on it could be a difficult problem.

Theorem 2. Let I be a zero-dimensional ideal in K[x1, . . . , xn]. There exists well-defined multiplicities

mP at each point P ∈ VK(I) such that

dI =
∑︂

P∈VK(I)

mP .

This means that the number of solutions over the algebraic closure K counted with multiplicities is equal

to the dimension of the quotient ring space.

14 Chapter 2 — Mathematical foundations

Definition 16 (Ideals in shape position). Let I ⊆ K[x1, . . . , xn] be an ideal. We say that I is in

shape position if the reduced LEX Gröbner Basis of I has the form

{x1 − g1(xn), x2 − g2(xn), . . . , gn(xn)}

where deg(gi) < deg(gn) for each 1 ≤ i < n

Shape position ideals are a subclass of zero-dimensional ideals. Due to their structure, it is straight-

forward to see that dI = deg(gn) and the complexity of computing the variety of such an ideal is

equivalent to the complexity of factorizing the univariate polynomial gn.

2.5 Regular systems of polynomials

In this section we introduce the concept of regular sequences of homogeneous polynomials which will be

necessary in Chapter 3 to understand one of the algorithms for computing Gröbner basis. Let us start

with a basic definition.

Definition 17 (Zero-divisor). A non-zero element a is said to be a zero-divisor in a commutative

ring R if a · b = 0 for some non-zero element b ∈ R.

Definition 18 (Regular sequence). A sequence of polynomials f1, . . . , fs ∈ K[x1, . . . , xn] is regular

if, for all 1 ≤ i ≤ s, the equivalence class of fi, denoted as [fi], is not a zero-divisor in the quotient ring

K[x1, . . . , xn]/⟨f1, . . . , fi−1⟩. In other words, if there exist gfi ∈ ⟨f1, . . . , fi−1⟩, then g (absolutely not fi)

belongs to ⟨f1, . . . , fi−1⟩.

Usually, regular sequences come into play when dealing with homogeneous polynomials. Hence, in

the rest of the section we will focus on homogeneous polynomials and ideals.

Proposition 2. Let K be an algebraically closed field and let I ⊆ R = K[x1, . . . , xn] be a homogeneous

ideal. Let f ∈ K[x1, . . . , xn] be a nonconstant homogeneous polynomial. If the equivalence class [f] is

not a zero-divisor of the quotient ring R/I, then

dim(V(I + ⟨f⟩)) = dim(V)− 1 if dim(V) > 0

dim(V(I + ⟨f⟩)) = 0 if dim(V) = 0

In order to determine if we are dealing with a regular sequence or not, we can check the zero-divisor

condition. Indeed, given a homogeneous ideal I ⊂ K[x1, . . . , xn] such that I ̸= ⟨1⟩ and a homogeneous

polynomial f ∈ K[x1, . . . , xn] of degree d, f is not a zero-divisor in K[x1, . . . , xn]/I if and only if the

Hilbert series HI+⟨f⟩(z) = (1 − zd)HI(z). An immediate consequence of this result is the following

proposition.

Proposition 3. Given a sequence F of homogeneous polynomials f1, . . . , fs ∈ K[x1, . . . , xn] with degrees

di = deg(fi), F is a regular sequence if and only if its Hilbert series is defined as

HI(z) :=

∏︁s
j=1(1− zdj)
(1− z)n

.

2.5 Regular systems of polynomials 15

Moreover, if s = n (meaning that the number of equations is equal to the number of variables), the

sequence F is regular if and only if HI(z) is a polynomial (that is, (1− z)n divides
∏︁s
j=1(1− zdj)).

2.5.1 Variables in Noether position

Checking whether the variables are in Noether position or not represents another way to determine if

we are dealing with regular sequence or not. To fully understand this notion, recall the definition of

elimination order 10.

Given a set of polynomials f1, . . . , fs ∈ R = K[x1, . . . , xn], we say that a variable xi ∈ R/⟨f1, . . . , fs⟩
is an algebraic integer over K[xs+1, . . . , xn] if there exist a polynomial g ∈ K[xi, xs+1, . . . , xn] ∩
⟨f1, . . . , fs⟩ that is monic w.r.t xi.

Definition 19. The variables x1, . . . , xs are in Noether position w.r.t. the system f1, . . . , fs if their

canonical images in R/⟨f1, . . . , fs⟩ are algebraic integers over K[xs+1, . . . , xn] and K[xs+1, . . . , xn] ∩
⟨f1, . . . , fs⟩ = ⟨0⟩

Moreover, we say that the variables x1, . . . , xn are in simultaneous Noether position with respect

to the system of polynomials f1, . . . , fs if the variables x1, . . . , xi are in Noether position with respect

to f1, . . . , fi for all 1 ≤ i ≤ s. Now, we have all the ingredients to define regular sequences on Noether

position variables.

Proposition 4 (Regular sequence). Let f1, . . . , fs ∈ K[x1, . . . , xn] be a system of homogeneous poly-

nomials such that ⟨f1, . . . , fs⟩ ≠ ⟨1⟩. If the variables x1, . . . , xs are in Noether position w.r.t. the system

f1, . . . , fs, then the sequence f1, . . . , fs, xs+1, . . . , xn is regular. In addition, if the variables x1, . . . , xn

are in simultaneous Noether position w.r.t f1, . . . , fs, then f1, . . . , fs, xs+1, . . . , xn is a regular sequence.

The connection between Noether position variables and regular sequences works both ways. That

means that if we have a regular sequence, but the involved variables are not in Noether position, then,

if the field is sufficiently large, this variable condition can be reached by a linear change of coordinates.

16 Chapter 2 — Mathematical foundations

3
Computational algebra

Chapter 2 aims at introducing the reader to the basic mathematical concepts needed to understand the

algorithms and their application to the field of cryptography. From now we are going to illustrate the

methodologies and the algorithms which were developed (and are currently under investigation) to solve

the following problems:

1) how to compute a Gröbner basis

2) how to solve systems of polynomial equations

Due to ease of notation, we use f →G 0 to denote the reduction to zero of f by the set of polynomials

G, meaning that the remainder on division of f by the set G is zero. In other words, f can be written

as a linear combination of the polynomials in G. The mathematical notions that will be introduced are

taken from [15, 16] unless otherwise specified.

3.1 Gröbner basis computation

Buchberger was the first one to answer at the problem of computing Gröbner basis. Moreover, his

algorithm and contributions were used by researchers as a guideline and as an inspiration to develop

newer and more efficient algorithms. In this subsection we are going to present the main algorithms and

discuss the possible variants.

3.1.1 Buchberger’s algorithm

Prerequisites From the Gröbner basis theory, we have seen that, given a sequence of polynomials

{f1, . . . , fn}, it could be a Gröbner basis if and only if there are no polynomial combinations of the fi

such that the leading terms are not in the ideal generated by the leading terms of each fi.

Example 1. Given f1 = x2 + y and f2 = x, the combination

f1 − xf2 = y

triggers the cancellation of x2 and x which are the leading terms of f1 and f2 respectively. As a

consequence, the leading term of the result is y, which is not a combination of LT (f1) and LT (f2).

18 Chapter 3 — Computational algebra

Hence, {f1, f2} is not a Gröbner basis, and we know that, to build a GB, we must include the polynomial

y (the combination of f1 and f2) into the set of polynomials.

Buchberger introduced the concept of S-polynomials. We will use multideg(f) to denote the tuple

of integers corresponding to the degrees of LT (f), e.g. if f = x2y + z, multideg(f) = (2, 1, 0) where 2, 1

and 0 are the exponents of the variables x, y, z respectively.

Definition 1 (S-polynomial). Let f, g ∈ K[x1, . . . , xn] be non-zero polynomials.

• If multideg(f) = α and multideg(g) = β, then let γ = (γ1, . . . , γn), where γi = max(αi, βi) for

each 1 ≤ i ≤ n. We call xγ11 x
γ2
2 · · ·x

γn
n = xγ the least common multiple of LM(f) and LM(g):

xγ = lcm(LM(f), LM(g)).

• The S-polynomial of f and g is the combination

S(a, b) = lcm(LM(a), LM(b))

LT (a)
a− lcm(LM(a), LM(b))

LT (b)
b.

As a result of the previous definition, we can present the first Buchberger’s criterion.

Theorem 1 (S-pair critetion (Buchberger’s criterion)). Let I be a polynomial ideal. Then, a

basis G = {g1, . . . , gs} of I is a Gröbner basis of I if and only if for all pairs i ̸= j where 1 ≤ i, j ≤ s,

the remainder of division of S(gi, gj) by G (listed in some order) is zero:

S(gi, gj)
G
= 0

Thanks to Theorem 1, it is easy to show whether a sequence of polynomials G is a Gröbner basis or

not. Those results were immediately refined as follows.

Theorem 2 (Buchberger’s criterion refinment). A basis G = {g1, . . . , gs} for an ideal I is a

Gröbner basis if and only if S(gi, gj) →G 0 for each 1 ≤ i, j ≤ s where i ̸= j. The notation f →G 0

denotes the possibility to represent f as a linear combination of the basis polynomials g1, . . . , gs, no

matter of how they are sorted to perform the polynomial division. This representation is called Standard

representation.

Proposition 1. There are some situations where an S-polynomial is guaranteed to have a standard

representation. Indeed, given a finite set G ⊆ K[x1, . . . , xn], suppose that we have f, g ∈ G such that

gcd(LM(f), LM(g)) = 1. Then S(f, g) →G 0 is guaranteed. Moreover, the same check is given by the

equivalent relation

lcm(f, g) = LM(f) · LM(g).

The third improvement to the Buchberger’s conditions requires a generalization of the S-polynomial

notion.

Definition 2. Let F = {f1, . . . , fs}. A syzygy on the leading terms LT (f1), . . . , LT (fs) of F is an

s-tuple of polynomials S = (h1, . . . , hs) ∈ K[x1, . . . , xn]
s such that

s∑︂
i=1

hiLT (fi) = 0.

3.1 Gröbner basis computation 19

We denote as S(F) the subset of K[x1, . . . , xn]
s consisting of all the syzygies on the leading terms of F .

From another point of view, the syzygies are the possible linear combinations of the polynomials in

F that produce the cancellation of their leading terms. In other word, the S-polynomial is an example

of syzygy because it leads to the cancellation of the leading term of both the involved polynomials.

Moreover, the set of syzygies is closed under coordinate-wise sum and multiplication by polynomials

and, given F , the set S(F) has a finite basis, that is a finite set of syzygies such that every other

syzygy in S(F) can be represented as a linear combination of the basis syzygies. From a theoretical

point-of-view the set of syzygies is called a module of the ring K[x1, . . . , xn]. Further details can be

found in [15, Chapter 2].

At this point we have all the necessary ingredients to define a more advanced S-pair criterion.

Definition 3. A basis G = {g1, . . . , gs} for an ideal I is a Gröbner basis if and only if for every element

S = {H1, . . . ,Hs} in a homogeneous basis for S(G), S ·G→G 0, where S ·G =
∑︁s

i=1Higi.

Corollary 1 (Second Buchberger’s criterion). Given G = {g1, . . . , gs}, suppose that S ⊆ {Sij |
i < j} is a basis for S(G), and we have distinct elements gi, gj , gl ∈ G such that

LT (gl) | lcm(LT (gi), LT (gj)).

If Sil, Sjl ∈ S, then S \Sij is also a basis of S(G) because Sij is nothing else that a linear composition

of Sil and Sjl.

The algorithm The Buchberger’s algorithm presented here makes use of the criteria defined so far.

In particular, Theorem 1 and Corollary 1 will be of high relevance in the choice of the couples to be

processed for generating the remaining elements of a Gröbner basis. Algorithm 1 shows a sketch of

a possible implementation of the Buchberger’s algorithm where Criterion(fi, fj , B) is True if and

only if there exist some l /∈ {i, j} for which the pairs [i, l] and [j, l] are not in B and LM(fl) divides

lcm(LM(fi), LM(fj)).

Algorithm 1 Buchberger Gröbner basis algorithm

1: procedure getGB(F = {f1, . . . , fn}) ▷
2: B := {(i, j) | 1 ≤ i < j ≤ n}
3: G := F
4: t := n
5: while B ̸= ∅ do
6: Select (i, j) ∈ B
7: if lcm(LM(fi), LM(fj)) ̸= LM(fi)LM(fj) ∧ Criterion(fi, fj , B) = False then
8: r := RedG(S(fi, fj))
9: if r ̸= 0 then

10: t := t+ 1
11: ft := r
12: G := G ∪ {ft}
13: B := B ∪ {(i, t) | 1 ≤ i ≤ t− 1}
14: B := B \ {(i, j)}
15: return G

20 Chapter 3 — Computational algebra

The complexity of the Buchberger’s algorithm has been deeply studied, and it has been defined as

follows:

2
(︂d2
2

+ d
)︂2n−2

.

However, depending on the considered system of equations, ad-hoc complexity bounds can be derived.

3.1.2 F4

Prerequisites To introduce the family of F4 algorithms, we require the concept of Macaulay matrices.

Let F = {f1, . . . , fs} be any set of polynomials in K[x1, . . . , xn] and ≺ a generic monomial ordering.

For any degree d ∈ Z+, the Macaulay matrix M≤d of F has columns indexed by the terms of degree

≤ d in the ring K[x1, . . . , xn], sorted in decreasing order w.r.t ≺. The rows of M≤d are indexed by the

polynomials mjfi, where mj is a term in K[x1, . . . , xn] such that deg(mjfi) ≤ d. Hence, the entry (i, j)

of M≤d is the coefficient of the monomial of column j in the polynomial corresponding to the i-th row.

Example 2 (How to build a Macaulay matrix). Let f1 = 2x2+3xy+7 and f2 = 4x+1 ∈ K[x, y]. Suppose

we want to build M≤3, that is the Macaulay matrix up to degree 3, with respect to the lexicographic

monomial ordering. First of all, we need to identify what are the monomials up to degree 3 that will

identify the columns of the matrix. These monomials, sorted w.r.t LEX in decreasing order, are:

1, y, x, y2, xy, x2, y3, xy2, x2y, x3.

Now, for each polynomial fi, we need to determine the monomials m ∈ K[x, y] such that deg(mfi) ≤ 3.

As regards f1, it can be multiplied by the following monomials:

1, y, x.

As regards f2, it can be multiplied by the monomials:

1, y, x, y2, xy, x2.

Now we have all the ingredients to build M≤3.

1 y x y2 xy x2 y3 xy2 x2y x3⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 · f1 7 0 0 0 3 2 0 0 0 0

y · f1 0 7 0 0 0 0 0 3 2 0

x · f1 0 0 7 0 0 0 0 0 3 2

1 · f2 1 0 4 0 0 0 0 0 0 0

y · f2 0 1 0 0 4 0 0 0 0 0

x · f2 0 0 1 0 0 4 0 0 0 0

y2 · f2 0 0 0 1 0 0 0 4 0 0

xy · f2 0 0 0 0 1 0 0 0 4 0

x2 · f2 0 0 0 0 0 1 0 0 0 4

3.1 Gröbner basis computation 21

The number of rows and columns can be predicted by applying simple formulas from combinatorics.

In particular, if nv denotes the number of variables involved and d the maximum degree for which we

are building the Macaulay matrix, the number of columns is given by:

number of columns =

(︃
d+ nv
nv

)︃
.

The number of rows is given by

number of rows =

ne∑︂
i=1

(︃
d− di + nv

nv

)︃

where ne is the number of equations and di is the total degree of the polynomial fi. If we apply those

formulas to the example above, we obtain

ncolumns =

(︃
3 + 2

2

)︃
= 10 and nrows =

(︃
3− 2 + 2

2

)︃
+

(︃
3− 1 + 2

2

)︃
= 3 + 6 = 9.

Sometimes, in particular, when dealing with a set of homogeneous polynomials, we are interested in

computing the Macaulay matrix of degree exactly d: Md. Let f1 = 2x2 + 3xy + 7y2 and f2 = 4x+ y ∈
K[x, y]. They are homogeneous polynomials of degree 2 and 1 respectively. We want to compute the

Macaulay matrix of degree 3: M3. This means that the columns will be identified only by the monomials

in K[x, y] of degree 3, which are:

y3, xy2, x2y, x3,

sorted in decreasing order as well. Now, for each polynomial fi, we need to determine the monomials

m ∈ K[x, y] such that deg(mfi) = 3. As regards f1, it can be multiplied by the following monomials:

[y, x]. As regards f2, it can be multiplied by the monomials [y2, xy, x2]. Now we have all the ingredients

to build M3.

y3 xy2 x2y x3⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

y · f1 7 3 2 0

x · f1 0 7 3 2

y2 · f2 1 4 0 0

xy · f2 0 1 4 0

x2 · f2 0 0 1 4

Even in this case the number of columns and rows can be predicted in advance:

ncolumns =

(︃
nv + d− 1

d

)︃
nrows =

s∑︂
i=1

(︃
n+ d− di − 1

d− di

)︃
.

If we apply those formulas to the example above, we obtain

ncolumns =

(︃
2 + 3− 1

3

)︃
nrows =

2∑︂
i=1

(︃
2 + 3− di − 1

3− di

)︃
=

(︃
2

1

)︃
+

(︃
3

2

)︃
= 5.

22 Chapter 3 — Computational algebra

The algorithm On 1999, Faugère introduced the first algorithm for computing Gröbner basis which

exploits methods from linear algebra. More than an algorithm, F4 represents a family of linear algebra

based algorithms for GB computation, since there are many variants and hybrid alternatives. As the

Buchberger’s algorithm, F4 makes use of the S-polynomials to determine the acceptance and the termi-

nation conditions. Although, whilst Buchberger’s algorithm considers one S-polynomial at a time, F4

uses linear algebra techniques like Gaussian elimination (row-reduction) to simultaneously compute sev-

eral S-polynomial remainders. Some algorithms perform Gaussian elimination on the degree dMacaulay

matrix for increasing values of d. The question is: when should we stop the computation? Derivations

of the Buchberger’s Criterion are used as a termination criterion which allows deciding whether a GB

has been found or not. This means that a good approximation of the possible higher value of d (called

solving degree) has to be found in order to measure the complexity of Gröbner basis computations.

The ComputeM subroutine 3 is the crucial part of the algorithm. As you can notice from the main

algorithm 2, the set L contains the halves involved in the computation of the S-polynomials separately.

Then, ComputeM receives the old basis G and the just mentioned set L. Here, the Macaulay matrices

come into play.

Algorithm 3 generates the set H from L, then additional polynomials xαfl are inserted into H. In

particular, for each monomial xβ ∈ H that is divisible by some LM(fl), a polynomial xαfl such that

xβ = LM(xαfl) is included in H if not already present. Including sufficient values guarantees that,

at the end of the procedure, S(fi, fj)
G

is included in G and that S(fi, fj) can be described with the

usual standard representation. Indeed, the ComputeM procedure returns the matrix of coefficients M

which is immediately reduced to the row-echelon form (linear algebra comes into play). This reduction

produces the equations S(fi, fj)
G

whose leading monomial is not in the set LM(G). Hence, they are

added to the set G and the loop has to be repeated. When the set of pairs B is empty the algorithm

terminates returning G, a Gröbner basis for I = ⟨f1, . . . , fn⟩. Proofs of correctness and termination can

be found in [15, 22].

Algorithm 2 F4

procedure F4(F = {f1, . . . , fn}) ▷
G := f

3: t := s
B := {{i, j} | 1 ≤ i < j ≤ s}
while B ̸= ∅ do

6: Select B′ such that B′ ̸= ∅ ∧B′ ⊆ B
B := B \B′

L := { lcm(LM(fi),LM(fj))
LT (fi)

| {i, j} ∈ B′}
9: M := computeM(L,G)

N := row echelon form of M
N+ := {n ∈ rows(N) | LM(n) /∈ ⟨LM(rows(M))⟩}

12: for n ∈ N+ do
t := t+ 1
ft := makepoly(n,)

15: G := G ∪ {ft}
B := B ∪ {{i, t} | 1 ≤ i ≤ t}

return G

3.1 Gröbner basis computation 23

Algorithm 3 computeM

procedure computeM(L,G = {f1, . . . , fr}) ▷

H := L

3: done := LM(H)

while done ̸= Monomials(H) do

Select xβ := max≺(Monomials(H) \ done)
6: done := done ∪ {xβ}

if ∃ fl ∈ G s.t. LM(fl) | xβ then

Choose randomly fl ∈ G s.t. LM(fl) | xβ

9: H := H ∪ { xβ

LM(fl)
fl}

M := matrix of coefficients of H where columns are Monomials(H), sorted in decreasing order

with respect to ≺
return M

Algorithm 4 makepoly

procedure makepoly(n,M = Monomials(H)) ▷

p := 0

3: for i = 0; i < |n|; i++ do

p = p+ n[i] ·M [i]

return p

The complexity of linear algebra based algorithms is not well-understood, especially when they do not

involve homogeneous polynomials. The complexity of F4 can be represented by the following formula:

O
(︃
nedsolv

(︃
nv + dsolv
dsolv

)︃ω)︃
where ne, nv, dsolv denote the number of equations, the number of variables and the solving degree

respectively [2]. However, because the complexity is given by the row reduction of Macaulay matrices,

this bound can be rewritten as

O

⎛⎝dsolv∑︂
i=0

⎛⎝(︃nv + i− 1

i

)︃
·
ne∑︂
j=1

(︃
nv + i− deg(fj)− 1

i− deg(fj)

)︃⎞⎠⎞⎠ . (3.1)

It is straightforward to notice that one of the key components of the formula is the so-called solving

degree. Indeed, the complexity of linear algebra based algorithms as F4 strongly depends on a ”good”

approximation of the maximum degree d reached during the GB computation. [12] tried to analyse the

connections between the solving degree of non-homogeneous ideals and the corresponding one derived

from their homogenization. For sake of completeness, we present the main relation. Given a set of

polynomials F = {f1, . . . , fs} ⊂ K[x1, . . . , xn], let I = ⟨F ⟩ be the ideal generated by the set F . Consider

the DRL monomial ordering, the following relation always holds:

max.GB.deg(F h) = solv.deg(F h) = solv.deg(F) ≥ max.GB.deg(F) = max.GB.deg(Ih) = solv.deg(Ih)

24 Chapter 3 — Computational algebra

where F h denotes the set obtained by homogenizing f1, . . . , fs, I
h denotes the homogenization of the

ideal I, and max.GB.deg and solv.deg denote the maximum degree of a polynomial in the reduced

Gröbner basis of I and the solving degree respectively.

3.1.3 F5

Prerequisites To understand the improvements introduced by Faugère in 2002 [19], we require the

generalization of the concepts introduced for the Buchberger’s algorithm and F4. In particular, we are

going to introduce the notions of signatures and s-reductions which are the main features introduced by

Faugère to reduce the number of reductions performed by the algorithm, gaining a huge improvement,

in particular when the system of polynomials is a Regular sequence.

Previously, we have seen how to use S-polynomials to reduce the number of reductions needed during

the computation of the Gröbner basis starting from a generic system of polynomials {f1, . . . , fs}. Here,

we are going to extend this notion by changing the view point towards the S-polynomials. To give you

an idea, let I = ⟨f1, . . . , fs⟩ be any ideal, then the S-polynomials and the remainders produced during

the Gröbner basis computation can all be written as

(a1, . . . , as) · (f1, . . . , fs) =
s∑︂
i=1

aifi (3.2)

where (a1, . . . , as) ∈ K[x1, . . . , xn]
s.

We are moving from reasoning on the ring K[x1, . . . , xn] to a module over the ring. In particular,

we are going to represent each value as a tuple in K[x1, . . . , xn]
s where we have component-wise vector

addition and multiplication (recall the similarity with the syzygy introduced in 3.1.1). As we have said

before, since each element in the ideal can be represented as in Equation 3.2, we can define a map

ψ : K[x1, . . . , xn]
s → I such that a = (a1, . . . , as)→

s∑︂
i=1

aifi.

We can think about ψ as the evaluation than brings the tuples back to the original polynomial.

Moreover, if s = 1, the map is injective. On the other hand, when s > 1, | ker(ψ)| > 1.

The definition of syzygy we gave in 3.1.1 can be generalized as follows.

Definition 4. Given a set of polynomials f1, . . . , fs, an s-tuple a ∈ K[x1, . . . , xn]
s is called syzygy if

ψ(a) =
s∑︂
i=1

aifi = 0 ∈ K[x1, . . . , xn].

With respect to the definition given in 3.1.1, here we are dealing with the full polynomials fi, not only

with their leading monomials.

The usual standard basis of K[x1, . . . , xn]
s is represented by the vectors e1 = (1, 0, 0, . . . , 0), e2 =

(0, 1, 0, . . . , 0), . . . , es = (0, 0, 0, . . . , 1). Therefore, each element can be represented as a linear combina-

tion of such vectors multiplied by suitable polynomials in K[x1, . . . , xn]. A special case, which is called

Koszul syzygy, is the syzygy defined between two generic polynomials f1, f2.

3.1 Gröbner basis computation 25

Example 3. Given a list of polynomials f1, . . . , fs ∈ K[x1, . . . , xn], for each pair (i, j) where 1 ≤ i < j ≤ s,
the Koszul syzygy is defined as

kij = −fjei + fiej .

All the s-tuples in K[x1, . . . , xn]
s can be expressed with respect to the standard basis e1, e2, . . . , es.

With respect to the definition we have given for the Buchberger’s algorithm, we are missing a tuple

ordering which is essential to develop the rest of the theory. These orderings are an extension of the

usual monomial orders to the ring module theory.

Definition 5. Let ≺ be any monomial order on K[x1, . . . , xn], we can define two main extensions:

• Term-over-position (TOP): xαei >TOP x
βej ⇐⇒ xα >≺ xβ, or xα = xβ ∧ i > j

• Position-over-term (POT): xαei >POT x
βej ⇐⇒ i > j, or i = j ∧ xα >≺ xβ

Without losing generality, the rest of the theory will be built upon the Position-over-term (POT)

order. Now we have all the ingredients to define the signature of an s-tuple.

Definition 6. Let g = (g1, . . . , gs) ∈ K[x1, . . . , xn]. The signature of g, denoted as s(g), is the term

appearing in g that is largest w.r.t. the POT order.

Example 4. Let us suppose we have the following standard basis e1 = (1, 0, 0), e2 = (0, 1, 0), e3 =

(0, 0, 1), and we are using the lexicographic monomial order. Given an s-tuple g = (x2+y, x2+y3, z2+x),

we know it can be shown as (x2 + y)e1 + (x2 + y3)e2 + (x + z2)e3. What is the signature in the two

extension orders?

• Considering POT and the fact that e3 > e2 > e1, the standard representation of g would be:

(x+ z2)e3 + (x2 + y3)e2 + (x2 + y)e1.

Hence, the signature must be within (x + z2)e3. In addition, we are using the lexicographic

monomial order to determine the leading monomial. As a result, the signature s(g) = xe3.

• We know (x2 + y)e1 + (x2 + y3)e2 + (z2 + x)e3. Considering TOP and lexicographic order, the

ordered g would be:

x2e2 + x2e1 + xe3 + y3e2 + ye1 + z2e3.

As a result, the signature s(g) = x2e2.

Next, we have to define what is a reduction in the context of signatures and how to use them to

determine whether we obtained a Gröbner basis or not. Shortly, we need to extend the Buchberger’s

Criterion to work on signatures.

Definition 7. Let g,h ∈ K[x1, . . . , xn]
s. Let xα ∈ K[x1, . . . , xn] be a monomial and let c ∈ K. We say

that g− cxαh ∈ K[x1, . . . , xn]
s is the result of an s-reduction of g by h if

i. there is a term bxβ in the polynomial ψ(g) ∈ K[x1, . . . , xn], such that

LT (cxαψ(h)) = cxαLT (ψ(h)) = bxβ

26 Chapter 3 — Computational algebra

ii. s(g) ≥POT s(xαh)

If the equality holds in ii. we say the reduction is a singular s-reduction, otherwise it is a regular

s-reduction.

When the reduction is performed by a set H, we say that g is s-reduced to k by H if there is a finite

sequence of s-reductions such that:

g− c1xα1h1 − · · · − clxαlhl

where l ≤ |H|, hi ∈ H for 1 ≤ i ≤ l and ci ∈ K. If there are no possible reductions, we obtained

the equivalent of the remainder on division. In particular, by mixing the definitions of syzygy and s-

reductions, we can say that a given s-tuple g ∈ K[x1, . . . , xn]
s s-reduces to zero by some set of vectors

H (denoted as g→H 0) if there exist a syzygy k such that g can be s-reduced to k using vectors from

H. Indeed, by definition of syzygy, ψ(k) reduces to zero, therefore, even g reduces to zero as well.

Now, the idea is to replicate what we have done in the Buchberger’s algorithm by using s-reductions,

signatures and a generalization of the S-polynomials.

Definition 8. Let g,h ∈ K[x1, . . . , xn]
s correspond to monic ψ(g) and ψ(h) ∈ K[x1, . . . , xn]. The

corresponding S-vector (the counterpart of the S-polynomials for s-tuples) is the element in K[x1, . . . , xn]
s

defined by:

S(g,h) = lcm(LM(ψ(g)), LM(ψ(h)))

LM(ψ(g))
· g− lcm(LM(ψ(g)), LM(ψ(h)))

LM(ψ(h))
· h.

It is straightforward to notice that ψ(S(g,h)) = S(ψ(g), ψ(h)).

Let I be an ideal in K[x1, . . . , xn] and let G = {g1, . . . ,gs} ⊆ K[x1, . . . , xn]
s where all ψ(gi) are

monic. G is said to be a signature Gröbner basis for I if

∀
h∈K[x1,...,xn]s

h→G 0.

If M = xαei is a term in K[x1, . . . , xn]
s, we say G is signature Gröbner basis below M if all

h ∈ K[x1, . . . , xn]
s with s(h) <POT M s-reduce to zero using G. In other words, the counterpart of the

Buchberger’s Criterion for signature based methods, can be defined as follow:

Definition 9 (Signature based Buchberger’s Criterion).

i. G is a signature Gröbner basis for I if and only if for all S-vectors S(gi, gj) with 1 ≤ i < j ≤ s

and all ei with 1 ≤ i ≤ s, S(gi, gj)→G 0.

ii. if M = xαei is a term in K[x1, . . . , xn]
s, we say G is signature Gröbner basis below M for I if and

only if for all S-vectors S(gi, gj) with 1 ≤ j ≤ s and all ei with s(ei) <POT s(M), S(gi, gj)→G 0.

Since now we know how to obtain a signature Gröbner basis, is it possible to convert it to a usual

Gröbner basis?

3.1 Gröbner basis computation 27

Proposition 2. If G = {g1, . . . , gs} is a signature Gröbner basis for I, then

ψ(G) = {ψ(g1), . . . , ψ(gs)}

is a Gröbner basis for I.

A second criterion, as done for the Buchberger’s algorithm can be defined in order to avoid unnec-

essary s-reductions.

Proposition 3 (Second Criterion). Let G = {g1, . . . , gs} and h = S(gi, gj). If G is a signature

Gröbner basis below s(h) for I and there is syzygy k such that s(k) divides s(h), then h→G 0.

Now, we have all the ingredients to build a signature based Gröbner basis algorithm.

The algorithms During the last two decades, many variants of the original F5 algorithm were de-

signed. Whilst the original F5 algorithm seems a signature based translation of the Buchberger’s al-

gorithm, other variants tried to develop hybrid versions between F4 and F5 by using signature based

criteria to determine the couples for which is necessary to apply linear algebra steps. Here we present a

F5 like algorithm following the original version developed by Faugère [19] and a version of the so-called

Matrix-F5 variant.

Signature based Buchberger-like F5 algorithm Algorithm 5 is quite difference w.r.t. the original

F5. In particular, the version proposed by Faugère contains additional reduction rules that improve the

process. Additionally, even Faugère suggests implementing the algorithm in an F4 fashion for efficiency

reasons.

Algorithm 5 F5

procedure F5(F = {f1, . . . , fs}) ▷

G := ∅
3: P := {e1, . . . , es}

S := {−fjei + fiej | 1 ≤ i < j ≤ s} ▷ The Koszul syzygies are pre-computed

while P ̸= ∅ do
6: g := pi ▷ pi ∈ P | s(pi) = min({s(p1), s(p2), . . . })

P := P \ {g}
if Criterion(g, G ∪ S) = ⊥ then

9: h := gG ▷ a regular s-reduction of g by G

if ψ(h) = 0 then

S := S ∪ {h}
12: else

h := 1
LC(ψ(h))h

P := P ∪ {S(k,h) | k ∈ G and S(k,h) is regular}
15: G := G ∪ {h}

return ψ(G)

28 Chapter 3 — Computational algebra

In order to describe the complexity of F5 algorithms, we need to distinguish between the origi-

nal version proposed by Faugère in 2002, and the corresponding matrix version. In particular, given

f1, . . . , fs ∈ K[x1, . . . , xn], the complexity of the first F5 algorithm is bounded by

O
(︂(︂ ddmm

(dm − 1)dm−1

)︂ω(n−s)
· n2−

ω
2

(︂
(dm − 1)

(︂ dm
2π(dm − 1)3

)︂ω
2
+O(1)

)︂)︂
(3.3)

operations in K, where dm =
∑︁s

i=1 deg(fi)
s is the arithmetic mean of the polynomial degrees [2]. However,

this bound does not hold in general, therefore a generic linear change of variables could be required.

A sufficient condition for the bound to hold is that the variables should be in simultaneous Noether

position. Moreover, if the system is regular and the field is sufficiently large, a generic linear change of

variables can be applied to make the variables in this position (note that the linear change of variables

is not a free operation, and it could represent the worst part of the process).

Matrix-F5 In this paragraph we present a simple version of the Matrix-F5 algorithm (Algorithm 6)

where we give as input a list of homogeneous polynomials and a degree bound, denoted as maxdegree, up

to which a reduced Gröbner basis will be computed. Due to ease of notation, we will use Md,s to denote

the Macaulay matrix of degree d w.r.t. the polynomials indexed by 1, . . . , s (recall example 2 on how

to build Macaulay matrices), and Md,s to denote the matrix obtained after the Gaussian elimination

on Md,s. To keep track of what rows (polynomials) have been already taken into account, we identify

each row with a couple (a, b) where a denotes the index of the original polynomial involved (e.g. fa)

and b denotes the monomial which has to multiplied by fa to obtain the real polynomial corresponding

to that row (e.g. bfa). In other words, we can consider the couple (a, b) a sort of signature.

Further details on the correctness of Algorithm 6 can be found in [2]. As regards the complexity of the

algorithm, [2, Theorem 2] provides a good estimate when dealing with a set of homogeneous polynomials

f1, . . . , fs ∈ K[x1, . . . , xn] of identical degree d ≥ 2 where all the variables are in simultaneous Noether

position:

O

(︄
n

(︄
(λ0+1
λ0

)2d − 1
1
λ20
− 1

(λ0+1)2

)︄n(︃
1− d−1

2π
· (1 + λ−1

0)3 − 1

(1 + λ0)n−s+1
+O

(︃
1

n

)︃)︃)︄
.

As a result, we can notice that even F5 strongly depends on a good approximation of the solving degree

we have discussed in Subsection 3.1.2.

3.2 Gröbner basis conversion: from graded to LEX monomial order

Usually, it is computationally infeasible to directly compute a lexicographic Gröbner basis due to the

fact that it generates higher degree polynomials. The common modus operandi is to compute a Gröbner

basis w.r.t a graded monomial ordering, and then convert it to a lexicographic basis by using either the

GröbnerWalk algorithm or one of the FGLM algorithm variants. Gröbner Walk algorithm was one of

the first attempts for converting Gröbner basis between different orders. In particular, it represents a

generic version of a change of order algorithm. Although, it is not used in practice due to its higher

computational complexity. Therefore, other algorithms are preferred from a practical point of view, since

most of the problems we are currently dealing with concern zero-dimensional ideals and well-structured

3.2 Gröbner basis conversion: from graded to LEX monomial order 29

Algorithm 6 Matrix-F5 algorithm [2].

procedure F5(F = {f1, . . . , fs}, maxdegree) ▷ fi homogeneous polynomials such that deg(fi) = di
G1 = ∅, G2 = ∅, . . . , Gn = ∅

3: for d = d1; d <= maxdegree; d++ do
Md,0 = [], Md,0 = []
for i = 1; i ≤ s; i++ do

6: if d < di then
Md,i =Md,i−1

else if d = di then
9: Mdi,i =Mdi,i−1 + [fi] ▷ Row addition in position (i, 1)

else
Md,i =Md,i−1

12: criterion-ref := LT (Md−di,i−1) ▷ Take the signatures we have already handled.
for f ∈ Rows(Md−1,i) \ Rows(Md−1,i−1) do

(k, u) := getIndex(f) ▷ u = xj1xj1 · · ·xjd−di−1
where 1 ≤ j1 ≤ j2 ≤ · · · ≤ jd−di−1

15: for j = d− di − 1; j ≤ n; j ++ do
if uxj /∈ criterion-ref then

Md,i :=Mdi + [xjf] ▷ the new row will have index (i, uxj)

18: Md,i = RowEchelonForm(Md,i)
for f ∈ Rows(Md,i) do

if f
LT (Gi) = f then ▷ If f is not reducible by the set LT (Gi)

21: Gi = Gi + [f]

G :=
⋃︁s
i=1Gi

return G ▷ G contains the elements gi of the reduced GB such that deg(gi) ≤ maxdegree

systems of polynomials.

3.2.1 FGLM

FGLM was proposed by Faugère, Gianni, Lazard and Mora in 1993 to solve one of the major problems

deriving from the Gröbner basis computation. It is known that computing a Gröbner basis w.r.t LEX

monomial order requires a huge computational power. Back in 1993, the only known algorithm for

computing Gröbner basis was the Buchberger’s algorithm. With FGLM the authors provided not only a

way to compute LEX GB in a more efficient way, but they showed that moving from a graded monomial

order to the lexicographic one is more convenient and less computationally demanding. Starting from

a Gröbner basis G≺1 of an ideal I w.r.t a monomial order ≺1, FGLM generates a lexicographic GB for

the same ideal. The idea behind FGLM is to determine a univariate polynomial with respect to the

smallest variable (call it x1). So, firstly it considers all powers of x1 and tries to write each of them as a

linear combination of the previous ones modulo the ideal I = ⟨G≺1⟩. Every time it finds a power of x1

which can be completely represented as a linear combination of previous powers of x1, it considers this

representation as a polynomial of GLEX (the lexicographic Gröbner basis). Then, it takes the remaining

variables as the last components of GLEX.

30 Chapter 3 — Computational algebra

Algorithm 7 FGLM

procedure fglm(G) ▷

Compute BG

3: GLEX = ∅
BGLEX = ∅
for i = 0, 1, . . . , |BG| do

6: r := xi1
G

if ∄(a1, a2, . . . , a|BGLEX |
) | r =

∑︁|BGLEX |
i=1 aiBGLEX [i] then

BGLEX = BGLEX ∪ {xi1}
9: else

GLEX = GLEX ∪ {xi1 − r}

for i = 2, . . . , n do

12: r := xi
G

GLEX = GLEX ∪ {r}

return GLEX

Algorithm 7 presents a sketch of the FGLM algorithm. The complexity of the procedure is given by

O(nd3I)

where n is the number of variables and dI is the dimension of the quotient ring basis (see Chapter 2).

3.2.2 SparseFGLM

If the given ideal is known to be in shape position, the algorithm exploits the deterministic or the

probabilistic version of the Wiedemann algorithm. Although, [21] also provided a generic version of the

algorithm, as shown in Algorithm 10. All the algorithms and the corresponding complexities do not

take into account the complexity derived by the computation of the multiplication matrices, therefore

we assume them to have already been computed in advance.

The Wiedemann algorithm Wiedemann algorithm is part of the more general category of Krylov

methods. There exist two versions of the algorithm:

• the probabilistic algorithm (Algorithm 8) has a runtime complexity of

O(dI(Z + log(dI))) (3.4)

operation in K, where Z is the number of non-zero entries in the considered matrix. It returns,

with large probability, the minimal polynomial associated to the generated sequence [43].

• the deterministic algorithm (Algorithm 9) has a runtime complexity of

O(dI(Z + dI log(dI) log log(dI))) (3.5)

3.2 Gröbner basis conversion: from graded to LEX monomial order 31

operations in K, where Z is still the number of non-zero entries in the considered matrix.

The probability of success of the probabilistic algorithm is given by:

Pq(n) =

⎧⎨⎩(1− 1
q)

2n if q ≥ N

(1− 1
q)

2q(1− 1
q2
)n−q if

√
n ≤ q < n

(3.6)

where q is the field cardinality and n is the matrix dimension (for sake of simplicity we are considering

square matrices) [25].

Algorithm 8 Probabilistic Wiedemann algorithm

procedure ProbabilisticWiedemann(G1) ▷

Compute BG1

3: Compute T1
→
e := (1, 0, . . . , 0)T ∈ K(D×1)

for i = 1, . . . , 2D − 1 do

6:
→
ri:= T T1

→
→
ri−1

s := [⟨→ri,
→
e ⟩ | i = 0, . . . , 2D − 1]

f1 := BerlekampMassey(s)

9: return f1

Algorithm 9 Deterministic Wiedemann algorithm

procedure DeterministicWiedemann(G1) ▷

Compute BG1

3: Compute T1, T2, . . . , Tn
→
e1:= (1, 0, . . . , 0)T ,

→
e2:= (0, 1, . . . , 0)T , . . . ,

→
eD:= (0, 0, . . . , 1)T ∈ K(D×1)

k := 1; F := []; f := 1; d := 0;
→
b=

→
e1;S := []

6: while
→
b ̸=

→
0 do

s := [⟨→ek, T i1
→
b ⟩ | i = 0, . . . , 2(n− d)− 1]

g := BerlekampMassey(s)

9: f := f · g; d := deg(f); F := F + [g];
→
b := g(T1)

→
b ; S := S + [s]

k := k + 1

f1 :=
∏︁
f̃∈F f̃

12: return f1, F, S

The BMS algorithm The generalization of the Wiedemann algorithm, or better of the Berlekamp-

Massey algorithm, is given by the BMS algorithm. BMS stands for Berlekamp-Massey-Sakata and it is

the multidimensional version of the just mentioned algorithm. Explaining how it works is not the scope

of this thesis, therefore we are going to shortly describe what is its usage in the context of Gröbner

basis and polynomial system solving. Both Wiedemann algorithm, both BMS are used by SparseFGLM

to derive the characteristic polynomials of linearly recurring sequences. When dealing with shape form

32 Chapter 3 — Computational algebra

ideals, we only need one of them, that is the reason why we simply use the BerlekampMassey algo-

rithm (the 1-dimensional version of BMS). On the other hand, when we are in a more general situation,

the multidimensional version is necessary to determine the sequence of characteristic polynomials from

which the LEX GB will be built upon. We refer the reader to [33] for the pseudocode and a well-detailed

explanation of the algorithm.

General case Algorithm 10 shows the pseudocode of SparseFGLM in the general case where we require

the usage of the BMS procedure.

Algorithm 10 BMS-based SparseFGLM

procedure SparseFGLM(G1,≺2) ▷

Compute BG1

3: Compute T1, T2, . . . , Tn
→
r∈ KD×1 ←R

→
u := 0; F := [1]; G := []; E := [];

6: repeat

e := ⟨→r , T u11 T u22 · · ·T unn
→
e ⟩

E := E + [e]

9: F,G := BMSupdate(F,G,
→
u,E)

→
u := Next(

→
u,≺2)

F := Reduce(F)

12: until NOT Termination criteria

if isGB(F) then ▷ isGB checks if F is a Gröbner basis or not

return F

15: else

return Fail

The complexity of the generic algorithm is bounded by

O(nvdI(N + ÑNdI))

where N is the maximal number of non-zero entries in the multiplication matrices T1, . . . , Tn, and Ñ

and N are the number of polynomials and the maximal term number of all polynomials in the resulting

lexicographic Gröbner basis respectively.

Ideals in shape form If we know in advance that our ideal is in Shape form, we can apply the

1-dimensional version of the BerlekampMassey algorithm. In particular, Algorithms 11 and 12 show the

pseudocode of SparseFGLM with the usage of the probabilistic and deterministic versions of Wiedemann

algorithm respectively.

3.2 Gröbner basis conversion: from graded to LEX monomial order 33

Algorithm 11 Probabilistic SparseFGLM

procedure SparseFGLM(G1,≺2) ▷

f1 := ProbabilisticWiedemann(G1)

3: if deg(f1) = D then

H := HD(s) ▷ The Hankel matrix

for i = 2, . . . , N do

6:
→
b := (⟨→rj , Ti

→
e ⟩ | i = 0, . . . , D − 1)T

→
c= (c1, . . . , cD)

T := H−1
→
b

fi :=
∑︁D−1

k=0

→
ck+1 x

k
1

9: return [f1, x2 − f2, . . . , xn − fn]
else

return Fail

Algorithm 12 Deterministic SparseFGLM

procedure SparseFGLM(G1,≺2) ▷

f1, F, S := DeterministicWiedemann(G1) ▷ Assume F = [f1,1, f1,2, . . . , f1,r]

3: if deg(f1) = D then

for i = 1, . . . , r do

di := deg(f1,i)

6: for j = 2, . . . , n do

Build the Hankel matrix H = Hj(S) and
→
b from S

→
c= (c1, . . . , cdi)

T := H−1
→
b

9: fj,i :=
∑︁di

k=0

→
ck+1 x

k
1

f1 = squareFree(f1)

if f1 ̸= f1 then

12: Compute {[f1,j , x2 − f2,j , . . . , xn − fn,j] | j = 1, . . . , r} such that f1 =
∏︁r
j=1 f1,j and f1,j

are pairwise coprime.

for j = 2, . . . , n do

fj := CRT([fj,1, . . . , fj,r], [f1,1, . . . , f1,r])

15: return [f1, x2 − f2, . . . , xn − fn]
else

return Fail

The complexity of SparseFGLM in the shape form ideal case is given by

O(nv · dωI log(dI)) (3.7)

operation in K [21], where ω is the linear algebra constant. However, following the notation for the

Wiedemann algorithm, the complexity of SparseFGLM can also be defined in terms of the sparsity of the

involved matrices:

O(dI(Z + nv log(dI))) (3.8)

34 Chapter 3 — Computational algebra

where Z is the number of non-zero entries [21].

3.3 Finding the variety

We are discussing the methodologies to solve systems of polynomial equations, meaning finding the

variety of the ideal determined by those equations. The first step is to build or to compute a Gröbner

basis starting from the original equations. Afterwards, the subsequent steps are not standard, due to the

fact that the paths to follow depend on the type of systems we are dealing with. In the next paragraphs

we illustrate the main ways to reach the result and how we can choose the best one.

3.3.1 Change of order

In Subsection 3.2 we already tackled the problem of converting a graded monomial ordering Gröbner

basis to a lexicographic one. In particular, for cryptographic purposes, we are mainly interested in

shape form ideals. By converting the basis we are generating one univariate polynomial which is of high

interest in terms of computing the variety. Indeed, factorizing such polynomial immediately gives the

possible values that the target variable can assume. Recall the shape of the shape form:

G = {x1 − g1(xn), x2 − g2(xn), . . . , gn(xn)}

where the ring of interest is K[x1, . . . , xn]. Algorithm 13 recovers the variety V(G). More in general, even

if we are not in the shape form case, converting a graded GB to a lexicographic one is still important

due to the fact that it generates simpler polynomials from which it is easier to determine the variety.

Algorithm 13 Variety of shape form Gröbner basis

procedure findVariety(G) ▷ G is in Shape form

Variety = []

3: Roots = findRoots(gn) ▷ Find all the roots in K of gn

for r ∈ Roots do

xĩ = gi(r) for 1 ≤ i < n

6: S = (x1̃, x2̃, . . . , xn−1˜ , r)

Variety = Variety+ [S]

return Variety

3.3.2 Resultant technique

Solving system of polynomials with resultants has been deeply explored in the recent years and different

techniques were developed. Before going to list some of this techniques that can be used to determine

the variety of an ideal, we present the notion of resultant and the basic ideas under the polynomial

system solving.

Definition 10 (Resultant). Let f, g ∈ K[x1, x2, . . . , xt, y]. The resultant of f and g with respect to

the variable y, denoted as R(f, g, y), is defined as the determinant of the Sylvester matrix of f and

3.3 Finding the variety 35

g when considered as univariate polynomials whose coefficients are in K[x1, . . . , xt]. For example, let

f =
∑︁m

i=0 fiy
i and g =

∑︁n
i=0 fiy

i, where fi, gi ∈ K[x1, . . . , xt], then

R(f, g, y) = det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

fm fm−1 fm−2 . . . f0

fm fm−1 fm−2 . . . f0

fm fm−1 fm−2 . . . f0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

fm fm−1 fm−2 . . . f0

gn gn−1 . . . g0

gn gn−1 . . . g0

gn gn−1 . . . g0
. . .

. . .
. . .

. . .

gn gn−1 . . . g0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
n times

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
m times

The Sylvester matrix has dimension (m+ n)× (m+ n).

The value of the resultant is non-zero if and only if two polynomials are algebraically independent.

In particular, R(f, g, y) will be a polynomial h ∈ K[x1, . . . , xt], such that, if (a1, a2, . . . , at, b) is a root

of both f and g, then (a1, . . . , at) is a root of the polynomial h. Moreover, there exist two polynomials

f̃ , g̃ ∈ K[x1, . . . , xt] such that f̃f + g̃g = R(f, g, y).

Resultants can be computed in other ways. One of them consists in using the Lagrange interpolation.

Indeed, if we are able to predict the degree of the resultant, we can select a suitable number of points

in order to uniquely determine the polynomial we are interested in. Let us quickly recall what is the

Lagrange Interpolation with a simple example.

Example 5. Suppose we have an oracle that evaluates a polynomial f ∈ K[x] with deg(f) = 4 on our

inputs. Are we able to recover such polynomial by only knowing a certain number of couples (input,

output)? How many couples do we need?

deg(f) = 4 implies that we require at least deg(f) + 1 = 5 points. Assume we have used the oracle,

and we obtained couples (xi, yi) for 1 ≤ i ≤ 5. Then, f can be uniquely determined by the Lagrange

interpolation formula:

f(x) :=
5∑︂
i=1

(︂
yi ·

5∏︂
j=0,j ̸=i

x− xj
xi − xj

)︂
.

Now, let f, g ∈ K[x, y], R(f, g, y) ∈ K[x] can be computed by using the Lagrange interpolation. Let

us suppose that the resultant will have degree n. Pick up n + 1 distinct values for the variable x, call

them a1, . . . , an+1 ∈ K. Evaluate both f and g on the chosen values. As a result we will obtain n + 1

input-output couples from f

(a1, f(a1, y)), (a2, f(a2, y)), . . . , (an+1, f(an+1, y)),

36 Chapter 3 — Computational algebra

and n+ 1 couples from g

(a1, g(a1, y)), (a2, g(a2, y)), . . . , (an+1, g(an+1, y)).

Note that the evaluations return univariate polynomials in the unknown y.

Now, for all 1 ≤ i ≤ n + 1, compute Ri(ai) = R(f(ai, y), g(ai, y), y) ∈ K. What are all those Ri?
These are the evaluations of the polynomial R(f, g, y) ∈ K[x] we want to determine on the n+1 distinct

values ai. By using the Lagrange interpolation on the n + 1 distinct points (ai,R(ai)) we can retrieve

the n-degree polynomial representing R(f, g, y).
Since now we are able to compute resultants, we can shortly discuss what are the two main methods

that can be used to solve polynomial systems:

• µ-Resultant

• Hidden variable

Resultants and how they can be used to solve systems of multivariate polynomials are out-of the

scope of this thesis. Therefore, we are going to briefly explain the Hidden variable method which is

the more used in this context.

Hidden variable The idea is to consider one of the variables as hidden-target variable and the others

as part of the coefficients (recall what we have done at the beginning of this subsection). By doing so,

we obtain another polynomial where the hidden-target variable is not part of it anymore. If we have

more than two polynomials, we can repeat the process several times until we obtain two polynomials in

two unknowns. Computing the resultant of these two polynomials w.r.t. one of the two variables leads

to a univariate polynomial which can be factorized to determine the possible values of the remaining

variable. Now, with back-substitution, we can retrieve the values for the other variables.

3.3.3 Eigenvalue methods

In Chapter 2 we have discussed the concept of multiplication matrices (see Definition 15). Multiplication

matrices and, in general, the determinant computation are also involved in the SparseFGLM algorithm

which exploits the Wiedemann algorithm. Sometimes, especially for cryptographic purposes, we are not

interested in finding the complete variety, but only the possible values of some chosen variables. As

we already know, we can compute a multiplication matrix for each variable. Then, to discover what

are the possible values it can assume, we must factorize the univariate polynomial derived from the

corresponding multiplication matrix, in other words we must factorize its characteristic polynomial.

But, how to compute such polynomial? We present two main ways to compute it:

• the Wiedemann algorithm we already presented in Subsection 3.2.2, which is a kind of the more

general category of Krylov methods.

• the naive application of one of the off-the-shelf algorithms for determinant computation and a

special case with the FreeLunch methodology [3].

3.3 Finding the variety 37

The possibility to use the characteristic polynomial of the multiplication matrices to derive the

solutions of the system of polynomials is guaranteed by Stickelberger theorem [16, Chapter 2.4].

Theorem 3 (Stickelberger Theorem). Let K be the algebraic closure of the field K and I ⊂
K[x1, . . . , xn] be a zero-dimensional ideal. For each i = 1, . . . , n and any λ ∈ K, the value λ is an

eigenvalue of the endomorphism Ti if and only if there exist a point a ∈ V(I) with ai = λ.

Corollary 2. Let K be an algebraically closed finite field, I be a zero dimensional ideal in K[x1, x2, . . . , xn],

≺ a valid monomial order and Ti the multiplication matrix of the variable xi with respect to ≺. The

set of solutions of xi is described by the roots of the minimal univariate polynomial in xi defined by

det(xiIdI − Ti) ∈ I, where I is the identity matrix.

Given a variable x and a matrix M ∈ Kn×n, its characteristic polynomial is the determinant of the

polynomial matrix det(xIn−M). This determinant can be computed in a variety of ways. Here, we list

the currently best known algorithms:

• Labahn [30]:

– Complexity: O(nω⌈s⌉) field operations, where s denotes the mean of the column degrees,

that is the mean of the maximum degrees (of the polynomials) within each column.

– Prerequisite: unimodular triangularization

– Type: deterministic.

• Storjohann [39]

– Complexity: O(n3d) field operations, where d is a bound on the degree of the entries of M .

– Prerequisite: weak Popov form computation.

– Type: probabilistic

• Neiger-Pernet [31]

– Complexity: O(nω) field operations.

– Prerequisite: having a subroutine which multiplies two n× n matrices in O(nω) field opera-

tions.

– Type: deterministic

The Freelunch methodology Given a matrix M ∈ Kn×n, assume it can be represented as a block

matrix with block sizes k × k where k|n. If it has the following structure

M :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 −M1

Ik×k 0 . . . 0 −M2

0 Ik×k . . . 0 −M3

... 0
. . .

...
...

0 0 . . . Ik×k −Mn/k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

38 Chapter 3 — Computational algebra

then, the characteristic polynomial p(x) w.r.t the variable x is the determinant

p(x) = det(xIn×n −M) = ±det(xn/kIk×k +

n/k∑︂
i=1

xi−1Mi).

The methodology is not fundamental to understand the rest of the thesis, therefore we do not present

the proof, and we refer the reader to [3] for a deeper analysis of the method. The complexity of

the methodology is given by the application of the algorithms presented above to the k × k matrix

xn/kIk×k +
∑︁n/k

i=1 x
i−1Mi.

As far as we have computed the required univariate polynomials, we can factorize them and, by

Corollary 2, determine the admissible values for the target variables. Sometimes, we don’t need to

compute a univariate polynomial for each variable, but we can exploit additional structures and cross-

dependencies between variables to limit the amount of required univariate polynomials to the necessary

variables only. The remaining ones could be found by back-substitution, gcd computation or linear

algebra methods (e.g. Gaussian elimination).

3.4 On the computation of the multiplication matrices

In Section 3.3 we presented different ways of obtaining the solutions of a system of polynomials. More-

over, almost all the described methodologies make use of the multiplication matrices (see Definition

15). But, what is their contribution to the algorithms’ complexity? In this section we present a brief

discussion about the computation of multiplication matrices and how it can be improved.

Let us define the context. Given a set of polynomials G = {f1, . . . , fs} ⊂ K[x1, . . . , xn] such that

the ideal I = ⟨f1, . . . , fs⟩ ̸= ⟨1⟩ is a zero-dimensional ideal and G is its reduced Gröbner basis, we

can compute the standard basis BI for the quotient ring K[x1, . . . , xn]/I. Moreover, we know that the

standard basis has the following structure:

BI := {Xα | Xα /∈ ⟨LM(I)⟩} = {Xα =

n∏︂
i=1

xαi
i | X

α /∈ ⟨LM(G)⟩}.

Due to ease of notation, denote as ϵi the i-th element of the quotient ring standard basis.

The multiplication matrix Tj of xj is defined by the square matrix whose i-th vector is represented

by the coefficients of the monomials of the basis BI contained in the reduction of xjϵi modulo the Gröbner

Basis G. Therefore, the complexity of computing a multiplication matrix depends on the number of

reductions we need to perform. Due to ease of notation, let us fix a generic monomial ordering ≺ and

define the following notations:

• in≺(I) = {LT (f) | f ∈ I} denotes the initial ideal of I w.r.t. ≺

• E≺(I) = {LT (f) | f ∈ G} denotes the stair of I w.r.t. ≺ (that is a minimal set of generators of

in≺(I))

• NF≺(f) =
∑︁t

i=1 ciϵi, where 1 ≤ t ≤ |BI |, ci ∈ K and ϵi ∈ BI , denotes the normal form of the

polynomial f .

3.4 On the computation of the multiplication matrices 39

To reduce the number of reductions it is straightforward to define the following criterion.

Proposition 4. Two simple checks can be done in order to avoid useless reductions:

i. if xjϵi ∈ BI , then xjϵiG = xjϵi.

ii. if xjϵi ∈ E≺(I), then, xjϵi
G = g − xjϵi where g ∈ G|LT (g) = xjϵi.

By doing so, we need to perform the reduction only for those monomials xjϵi which are not in the

quotient ring basis or in the leading terms of the reduced Gröbner basis. Other improvements can be

done by recycling previous computations.

Example 6. Let x, y, z variables and let G = {x2 + y, y2 + z, z2} be a reduced Gröbner basis. The

quotient ring basis is then 1, x, y, z, xy, xz, yz, xyz. If we are computing the multiplication matrix w.r.t.

the variable y, we are required to reduce the polynomials y, xy, y2, yz, xy2, xyz, y2z, xy2z. As regards

y, xy, yz, xyz, we can easily apply point i. of criterion 4. As regards y2, we can apply point ii. of the

same criterion.

The remaining monomials must be reduced. But, is it possible to reuse some previous reductions?

Suppose we are computing the reduction of xy2. We have already computed the reduction of y2 by

following point ii. of criterion 4. In particular, we obtained y2− (y2+ z) = −z. Therefore, reducing xy2

means reducing −xz by substitution, and luckily xz is a member of the quotient ring basis for which

we can apply point i. of the criterion. Of course, this is not always the case. Sometimes, additional

reductions are needed. Anyway, combining substitutions and reductions is a good way to reduce the

number of computations required by the algorithm.

As a consequence of the previous example, we can define a second criterion.

Proposition 5. Let F = {xjϵi|1 ≤ i ≤ |BI | ∧ 1 ≤ j ≤ n} \ BI be the border of the quotient ring

basis. Recall the example above, xy2 is an element of the border. Suppose we have to reduce a monomial

t = xjϵi. If Criterion 4 cannot be applied, we are in the following case:

• u = xkũ where ũ ∈ F and NF≺(ũ) =
∑︁t

i=1 ciϵi where ũ >≺ ϵt. This means that u is a multiple of

a monomial ũ which has been already reduced. Indeed,

NF≺(u) = NF≺(xkNF≺(ũ)) = NF≺(xk

t∑︂
i=1

ciϵi) = NF≺(
t∑︂
i=1

xkciϵi) =
t∑︂
i=1

ciNF≺(xkϵi).

However, applying the substitution technique we have seen in the previous example and formally

defined in criterion 5 makes the computation not fully parallelizable. Hence, depending on the avail-

able computational power we can decide when it is better parallelizing the reductions or applying the

substitution technique. Hybrid approaches can be used as well.

40 Chapter 3 — Computational algebra

4
Gröbner basis cryptanalysis

Algebraic attacks are the most decisive in determining the security of Arithmetization-Oriented prim-

itives. Moreover, different strategies can be applied depending on the context and on the structure of

the analysed primitive. In this chapter we focus our attention on the application of the Gröbner basis

methodology and how it is possible to improve the complexity of the attack and define the security of

the primitives. However, for sake of completeness, we provide a brief description of other two algebraic

cryptanalysis methodologies in Appendix B.

In Gröbner basis (GB) cryptanalysis a cryptographic primitive is represented as a system F of

polynomial equations with a certain number of variables. Depending on the primitive description,

different approaches can be taken towards constructing the polynomial system. For finding solutions to

that system, Gröbner basis method is applied. Since cryptographic primitives are typically constructed

over a finite field K, the polynomial system representing such a primitive will always have a finite number

of solutions in K. In algebraic geometry language this result in zero-dimensional ideals. Solving system

of polynomials with GB means finding at least one solution to the problem. This is usually divided into

three main computations:

1) A GB G of the ideal I = ⟨F⟩ is computed with respect to a chosen monomial ordering (usually

Degree Reverse Lexicographic) using one of the known algorithms, e.g. F4 [22], F5 [19] etc. We

will denote the complexity of this part CGB.

2) One or more univariate polynomials are obtained towards solving the system of polynomials in G.

The complexity of this computation is denoted as Cunivar.

Remark 1. A common way to achieve this is converting the computed GB G (from a graded mono-

mial ordering) to GLEX by using a conversion algorithm such as FGLM [20] for zero-dimensional

ideals 1. The FGLM conversion generates a reduced Gröbner Basis GLEX which contains a (unique)

univariate polynomial. Under the condition that I is a radical ideal or I follows Shape lemma,

FGLM outputs GLEX having the shape form (Definition 16).

3) Factorize that univariate polynomial by using an off-the-shelf polynomial factoring algorithm to

1Gröbner Walk [14] for general purposes

42 Chapter 4 — Gröbner basis cryptanalysis

find at least one root (solution) of that representative variable. The complexity of this part is

denoted as Croot.

Remark 2. If the ideal is in Shape form, the output of the FGLM algorithm has the convenient

structure given in Definition 16. If so happens, back-substitute that solution into the other equa-

tions to find the values for the remaining variables. Otherwise, we have no guarantees that we are

able to find the other roots by simple back-substitution. For example, additional applications of

the factorization algorithm could be required.

The complexity of a GB cryptanalysis depends on the 3 computations described above: finding

a Gröbner basis G≺, obtaining a univariate polynomial in GB, and factorizing or root finding of a

univariate polynomial from GLEX.

4.1 Computing a Gröbner basis

Determining the complexity of GB computation, particularly providing a good theoretical bound is a

non-trivial task in the context of GB cryptanalysis. Only a good theoretical bound on CGB can be relied

upon to compute the security parameter(s) based on this part of the GB cryptanalysis. By denoting as

dsolv the solving degree, which is the maximum degree reached during the Gröbner basis computation,

the runtime complexity of common Gröbner basis algorithms such as F4 or F5 is bounded [2] by

O
(︃
nedsolv

(︃
nv + dsolv
dsolv

)︃ω)︃
operations in K (see Chapter 3). It has to be considered that the given bound is loose, meaning that it is

too high compared to the experimental results. Due to this issue, from a defensive (or a designer’s) point

of view, we should not consider it as a metric to define the number of rounds of the analysed primitive.

Moreover, this bound is generic and thus, it does not take any structure of the underlying polynomial

into account. In Chapter 5 we provide a more concrete bound on the complexity of computing the GB

corresponding to the ideal generated by the Anemoi polynomial system.

For many systems, the value of dsolv can be approximated by computing the degree of semi-regularity

of the homogenization of the system [11]. Indeed, denote as F the system of polynomials and as FH

the corresponding homogenized system, [11] shows that

solve.deg(FH) = max.GB.deg(FH) ≥ solve.deg(F) ≥ max.GB.deg(F)

when DRL monomial order is used, where solve.deg returns the solving degree and max.GB.deg returns

the maximum degree encountered during the DRL Gröbner basis computation (which is the correct value

of dsolv). In addition, let f1, . . . , fs be the set of polynomials defining an ideal I and f topi denote the

homogeneous component of fi of largest degree, that is the sum of its terms whose total degree is the

largest one, i.e. if fi =
∑︁n

j=0 cjx
αj,1

1 . . . x
αj,n
n ,

f top =
∑︂

j∈{i:(αi,1,...,αi,n)=deg(f)}

cjx
αj,1

1 . . . x
αj,n
n .

4.2 Obtaining univariate polynomials 43

We can define

F top = {f top1 , . . . , f tops }.

Commonly, a lower bound on the value of dsolv can be obtained by computing the degree of semi-

regularity of the set F top defined above.

However, for practical examples, we can check that bound by directly computing the value dsolv and

obtain a relation on its growth with respect to the number of rounds of the primitive we are analysing.

4.2 Obtaining univariate polynomials

There are different ways to find the target univariate polynomial as we have seen in Chapter 3. Here,

we briefly discuss the common ones namely, basis conversion and determinant computation. As al-

ready discussed, there are two main ways to obtain univariate polynomials e.g. FGLM and Eigenvalue

methods.

4.2.1 FGLM

The common way of computing the univariate polynomial, which can be used to obtain the variety of

the ideal, is to convert GDRL to GLEX. Owing to the zero-dimensional ideal, one of the equations in GLEX

is univariate. From it, we can perform the third step and obtain the variety of the original ideal. For

zero dimensional ideals, the change of monomial order is typically done by using the FGLM algorithm

(see Subsection 3.2.1) which has complexity

O(nv · d3I)

operations in K, where nv is the number of variables in R and dI = dimK(R/I) is the dimension of the

quotient ring R/I. By using fast linear algebra and taking into account that our polynomials are sparse,

by using SparseFGLM the bound can be improved to a runtime complexity of

O(nv · dωI log(dI)) (4.1)

operation in K [21], where ω is the linear algebra constant which theoretically is bounded by 2 ≤ ω ≤
2.3727 [44], but practically the best known procedure is the Strassen algorithm which sets the value of

ω to 2.8074. By applying that algorithm we obtain a Gröbner basis GLEX containing a univariate poly-

nomial in the smallest variable. In addition, as seen in Subsection 3.2.2, the complexity of SparseFGLM

can also be defined in terms of the sparsity of the involved matrices:

O(dI(Z + nv log(dI))) (4.2)

where Z is the number of non-zero entries [21].

44 Chapter 4 — Gröbner basis cryptanalysis

4.2.2 Eigenvalue method

However, the eigenvalue method, which directly exploits the multiplication matrices of the target vari-

ables, can be used instead of FGLM. Instead of using SparseFGLM we can compute the multiplication

matrix of the l variables we are interested in and, for each of them, compute the characteristic polyno-

mial. This operation can be performed by computing the determinant of a matrix or by computing the

polynomial of a linearly recurring sequence, as previously described in Subsection 3.3.3.

Determinant computation Let xi be the target variable, that is the variable which we want to

obtain a univariate polynomial for, and let Ti be the associated multiplication matrix defined as in

Definition 15, the corresponding univariate polynomial can be defined by computing det(xiIdI − Ti),
whose roots, by Corollary 2, are the possible values for xi, that are the solutions we are interested in.

To compute such determinant we can apply one of the methods presented in 3.3.3. Suppose we decide

to use the Labahn et al. algorithm [30] whose complexity is given by

O(dωI ⌈s⌉)

operations in K, where s is the mean of the column degrees. As a consequence, if we aim at finding l

univariate polynomials, the overall complexity of Cunivar becomes

O(l · dωI).

Linearly recurring sequence Let xi be the target variable and let Ti be the associated multiplication

matrix, we can compute a linearly recurring sequence to determine, thanks to the Berlekamp-Massey

algorithm [5], its minimal polynomial [21, 25]. There exist two versions of the Wiedemann algorithm as

we have seen in Subsection 3.2.2. Suppose we decide to use the probabilistic version whose complexity

is

O(dI(Z + log(dI))) (4.3)

operation in K, where Z is the number of non-zero entries in Ti. Due to the fact that we need to apply

the method for all the l target variables, the overall complexity is given by:

ldI(Z + log(dI)). (4.4)

SparseFGLM or Wiedemann algorithm For cryptanalysis purposes, applying FGLM algorithms

is useful when the output is a basis in Shape Form, and we need to find the complete variety of the

system. Therefore, proving that the ideal we are analysing has a basis in Shape form is necessary to fully

exploit the ”nice” structure that can be obtained and thus, to decide whether it is convenient to apply

such algorithms or not. Moreover, we are dealing with sparse polynomials, meaning that it makes sense

to apply SparseFGLM and Wiedemann algorithm. As we have studied in Subsection 3.2.2, Wiedemann

algorithm is the starting step of the SparseFGLM algorithm. Therefore, an immediate question would

be: when is it better to use directly Wiedemann algorithm or vice versa?

Generically, it is worth using Wiedemann algorithm when we don’t need to compute the solutions

4.3 Factoring polynomials or root finding 45

for all the variables involved in a system. For example, given an algebraic model for a hash function,

cryptographers are usually not interested in the values assumed by the inner variables, but only on those

of the input or output variables. On the other hand, due to the fact that we can represent the complexity

of SparseFGLM in terms of the number of non-zero entries as done for the Wiedemann algorithm, we

can directly compare the two methods and define when one performs extremely better than the other.

With Wiedemann algorithm we find a univariate polynomial for each of the variables we are interested

in (say we want to find the solutions of k out of n variables). Therefore, the overall complexity is k

times the complexity of computing the univariate polynomial: O(kdI(Z + log(dI))).

With SparseFGLM the complexity is given by the computation of one univariate polynomial (for the

smaller variable with respect to a certain monomial order) plus the conversion of the system to a LEX

Gröbner basis in Shape form: O(dI(Z + n log(dI))).

We want to discover when the Wiedemann algorithm performs better than SparseFGLM. We can

temporarily remove the asymptotic notation and define the following inequality:

dI(Z + n log(dI))− kdI(Z + log(dI)) ≥ 0

Let define δ = n− k and rewrite the above equation accordingly.

dI(Z + (δ + k) log(dI))− kdI(Z + log(dI)) ≥ 0

dIZ + δdI log(dI) + kdI log(dI)− kdIZ − kdI log(dI) ≥ 0

δdI log(dI) + (1− k)dIZ ≥ 0

δ log(dI) + (1− k)Z ≥ 0

(n− k) log(dI) ≥ (k − 1)Z

From that result we can conclude that:

• if n = k = 1 the complexities are the same

• if Z ≤ n−k
k−1 log(dI), repeating Wiedemann algorithm performs better that SparseFGLM.

Note that we assume the sparsity of the multiplication matrices to be almost the same for each

variable. This is not always the case. Therefore, this is another check that has to be done to choose the

best algorithm.

4.3 Factoring polynomials or root finding

As for the polynomial factorization, there are multiple choice, some of them are:

• Cantor-Zassenhaus [13] [18]

• Berlekamp Algorithm [4]

• Kaltofen-Shoup probabilistic algorithm [27].

46 Chapter 4 — Gröbner basis cryptanalysis

Moreover, some criteria can be used to choose the best one. As an example, which often holds in the

context of cryptanalysis, if we are dealing with finite fields the latter one gives the best complexity:

d1.815 log(q) (4.5)

where d is the degree of the univariate polynomial h we have obtained from the previous step and q is

the field characteristic. Owing to zero-dimensional ideals, the degree of the univariate polynomial will

be equal to the dimension of the quotient space R/I: deg(h) = dI . From an experimental point of view,

the best algorithm can vary depending on the type of polynomial and on the implementation [36] [37].

5
Application to ANEMOI

Anemoi is a family of ZK-friendly permutations that can be used to construct efficient hash functions

and compression functions [8]. This permutation operates on F 2l
q for any field size q which is either a

prime number of a power of two and for any positive integer l. To define the structure of each Anemoi

round we organize the internal state into two vectors X ∈ F lq = (x1, . . . , xl) and Y ∈ F lq = (y1, . . . , yl).

5.1 The primitive

We provide a brief description of the main components of Anemoi that are important to follow our GB

cryptanalysis.

Figure 5.1: Non-linear layer of Anemoi(l > 1)

• Linear Layer: The Anemoi state consists of 2l elements (X,Y) ∈ Flq × Flq where l ≥ 1. After

constant addition to the state, linear transformations Ml and Ml ◦ ρ are applied to the two halves

X and Y respectively. The permutation ρ is defined as a circular shift by one position, meaning

that the first entry is moved to the last position while shifting the other ones to the previous

48 Chapter 5 — Application to ANEMOI

position:

ρ(i) := (i− 1) mod l for i ∈ {0, . . . , l − 1}.

On the output of the linear transformations, a pseudo-hadamard transform denoted as P is applied

to the vector (X,Y). Examples of matrices Ml are,

M1 =
[︂
1
]︂
M2 =

[︄
1 g

g g2 + 1

]︄
M3 =

⎡⎢⎢⎣
g + 1 1 g + 1

1 1 g

g 1 1

⎤⎥⎥⎦ M4 =

⎡⎢⎢⎢⎢⎢⎣
1 g2 g2 g + 1

g + 1 g2 + g g2 2g + 1

g g + 1 1 g

g 2g + 1 g + 1 g + 1

⎤⎥⎥⎥⎥⎥⎦
For our analysis, we will denote as L the block of operations composed by the round constant

addition and the linear transformations.

• Non-linear layer: LetQγ : Fq → Fq, Qδ : Fq → Fq be low-degree polynomials and let E : Fq → Fq
be a power map inducing the permutation over Fq, that is E = xα with α ≥ 3 coprime with φ(q).

The non-linear layer is a so-called open Flystel, denoted as H, applied component-wise to X and

Y (Figure 5.2). Qγ and Qδ are defined as follows:

Qγ =

⎧⎨⎩βx2 + γ if q > 2 is prime

βx3 + γ if q = 2n
Qδ =

⎧⎨⎩βx2 + δ if q > 2 is prime

βx3 + δ if q = 2n

where common values for β,γ and δ are respectively g (generator of the multiplicative subgroup

of the field Fq), 0 and g−1 mod q.

The Anemoi permutation on inputs (x1,0, . . . , xl,0, y1,0, . . . , yl,0) (where wi,j means the i-th input w of

the j-th round) can be summarized by the following function:

Anemoiq,α(x1,0, . . . , xl,0, y1,0, . . . , yl,0) =

L ◦RN ◦RN−1 ◦ · · · ◦R1(x1,0, . . . , xl,0, y1,0, . . . , yl,0) =

(x1,N+1, . . . , xl,N+1, y1,N+1, . . . , yl,N+1)

(5.1)

Flystel evaluation and verification in detail

Evaluation phase Let xi, yi the inputs to the open Flystel procedure that we denoted as H. The

output of H is: [︄
ui

vi

]︄
= H

(︄[︄
xi

yi

]︄)︄
=

[︄
xi −Qγ(yi) +Qδ(yi − E−1(xi −Qγ(yi)))

yi − E−1(xi −Qγ(yi))

]︄

Verification phase It is the corresponding counterpart of the open Flystel procedure, and it is called

closed Flystel (denoted as V). It is defined in order to verify that (ui, vi) = H(xi, yi). That operation

5.2 Anemoi rounds 49

⊟ Qγ

x y

⊟ E−1

⊞ Qδ

vu

⊞ Qγ

x y

⊟ E
s

⊞ Qδ

vu

Figure 5.2: Flystel evaluation (left) and verification (right) circuit representations in Anemoi [29].

Security 128 256

α 3 5 7 11 3 5 7 11

l = 1 21 21 20 19 37 37 36 35

l = 2 14 14 13 13 22 22 21 21

l = 3 12 12 12 11 17 17 17 17

Table 5.1: Number of rounds for Anemoi [8]

is equivalent to verify that (xi, ui) = V (yi, vi). The output of V is:[︄
xi

ui

]︄
= V

(︄[︄
yi

vi

]︄)︄
=

[︄
Qγ(yi) + E(yi − vi)
Qδ(vi) + E(yi − vi)

]︄

Refer to Figure 5.2 for the meaning of these formulas.

5.2 Anemoi rounds

In the Anemoi proposal, the authors provide different number of rounds depending on the choice of α,

the number of branches (2l) and the target security levels. These values are summarized in Table 5.1.

5.3 Modes of operation

The designers proposed two modes of operation depending on the possible usage of the primitive:

• sponge mode: to turn the primitive into a hash function

• JIVE: to turn the primitive into a compression function

The sponge mode is convenient to emulate a random oracle. The structure is given in Figure 5.3. In

our setting the permutation function f is exactly Anemoi,and it is defined over Kr+c where r stands for

the rate, that is the size of the outer part, and c is the capacity, that is the size of the inner part.

50 Chapter 5 — Application to ANEMOI

Absorbing phase Squeezing phase

⊞

m0

c bits

r bits

f

⊞

m1

f

. . .

. . .

. . .

f

⊞

ml−1

f

z0

f

z1

f

. . .

f

z⌈h/r⌉−1

Figure 5.3: Sponge mode: f is the permutation function, r stands for the rate, c for the capacity. Image
taken and modified from [26].

f ⊞ ⊞

⊞

x1

x2

x3

. . .
xl

out

Figure 5.4: JIVE mode: f is the permutation function, x1, . . . , xl are the inputs and out is the output [8].

The JIVE mode seems a derivation of the Davis-Meyer mode, but it has to be still analysed from

a security point-of-view. The reason under the JIVE mode is the usage of Anemoi as a compression

function. The construction is given in Figure 5.4.

5.4 Modelling phase

In this section, we describe the polynomial representation of Anemoi for l ≥ 1. This polynomial rep-

resentation (or modelling) play important role in our GB cryptanalysis. More specifically, we describe

how we at first adaptively extend the PCICO and FCICO modeling for more than two branches, and

then propose a new ACICO modelling for our GB analysis.

A variable x involved in the modelling are indexed as xi,j where i and j correspond to branch

number and round number respectively. For ease of notation we use xa to denote all the variables xi,a

for 1 ≤ i ≤ l from round a. Moreover, we use deg(xa) = {deg(x1,a), . . . , deg(xl,a)} to identify the degrees

of the variables xa.

The so-called CICO (Constrained Input Constrained Output) problem in algebraic modelling and

analysis of cryptographic primitives is given as following.

Definition 1 (CICO problem). Let F : Ftp → Ftp be a function and let u < t be an integer. The

CICO problem consists of finding x, y ∈ F up such that

F (x||0) = (y||0).

5.4 Modelling phase 51

For Anemoi, [7] suggests fixing the first l inputs and outputs to zero. Therefore, the CICO problem

for Anemoi is represented by

Anemoi(0||y0) = (0||yout) (5.2)

and we aim to find values for the variables y0.

Previous works introduced two main models to describe the Anemoi function. In particular, [7]

proposed two models: FCICO which represents each round with two equations whose unknowns are the

inputs of the main function and PCICO which represents each round with a single equation. [7] shows

the analysis of FCICO, whilst [29] recently shows the security analysis of PCICO and its differences with

respect to the first one. Although, those models were not extended to more than 2 branches. To improve

the GB analysis to more than 2 branches, we propose a new model which we denote as ACICO.

Let (x0,y0) = (x1,0, . . . , xl,0, y1,0, . . . , yl,0) be the inputs to the Anemoi permutation and (xr−1,yr−1) =

(x1,r−1, . . . , xl,r−1, y1,r−1, . . . , yl,r−1) be the inputs to the r-th round for 1 ≤ r ≤ N . Moreover, let si,r

for 1 ≤ i ≤ l model the input to the function E within the Flystel verification.

For ease of notation, we denote as L the application of the Anemoi linear layer at round r. In

particular

[︄
L
(1)
r

L
(2)
r

]︄
= Lr(xr−1,yr−1) :=

[︄
2 1

1 1

]︄⎛⎜⎜⎜⎜⎜⎝Ml

⎡⎢⎢⎢⎢⎢⎣
x1,r−1 + c1,r−1 y2,r−1 + c2,r−1

.

xl−1,r−1 + cl−1,r−1 yl,r−1 + cl,r−1

xl,r−1 + cl,r−1 y1,r−1 + c1,r−1

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠
T

(5.3)

where ci and di are the round constants. Note that the y + c in eq. (5.3) is written as the output of

ρ(y + c). Here ρ is a (linear) permutation as described in section 5.1. Furthermore, we use L
(j)
i,r to

denote the i-th entry of the j-th vector of the output matrix generated by the application of the linear

layer at the round r. Sometimes, when we want to specify what are the inputs to the linear layer L and

then, what are the variables which the output depends on, we use L(j)i,r (x,y) = L
(j)
i,r .

5.4.1 PCICO Model

Polynomials representation

For every 1 ≤ r ≤ N , let L
(1)
r and L

(2)
r be the inputs to the non-linear layer H in the r-th round. Notice

that this operation is performed for each couple (L
(1)
r ,L

(2)
r) for 1 ≤ i ≤ l. It outputs the functions

xi,r, yi,r where: [︄
xi,r

yi,r

]︄
:= H(L(1)

r ,L(2)
r) =

[︄
L
(1)
r −Qγ(L(2)

r) +Qδ(L
(2)
r − si,r)

L
(2)
r − si,r

]︄

Obviously, L
(1)
r ,L

(2)
r ∈ K[x0,y0, s1, . . . , sr−1] and xi,r, yi,r ∈ K[x0,y0, s1, . . . , sr] for 1 ≤ r ≤ N . Due

to CICO, i.e. fixing xi,0 = 0 for all 1 ≤ i ≤ l, we get L
(1)
r ,L

(2)
r ∈ K[y0, s1, . . . sr−1] and xi,r, yi,r ∈

K[y0, s1, . . . , sr].

52 Chapter 5 — Application to ANEMOI

For each couple (L
(1)
r ,L

(2)
r), let[︄

xi,r

yi,r

]︄
=

[︄
L
(1)
r −Qγ(L(2)

r) +Qδ(L
(2)
r − si,r)

L
(2)
r − si,r

]︄
(5.4)

be the Flystel evaluation modelled following the above statements and let[︄
L
(1)
i,r

xi,r

]︄
:= V (L

(2)
i,r , yi,r) =

[︄
Qγ(L

(2)
i,r) + E(si,r)

Qδ(yi,r) + E(si,r)

]︄
(5.5)

be the corresponding Flystel verification. The xi,r output of both the procedures must be the same.

Then, the following equality gives us the possibility to represent the Flystel evaluation of the i-th couple

at the r-th round with a single equation.

L(1)
r −Qγ(L(2)

r) +Qδ(L
(2)
r − si,r) = Qδ(yi,r) + E(si,r)

L(1)
r −Qγ(L(2)

r) +Qδ(L
(2)
r − si,r) = Qδ(L

(2)
r − si,r) + E(si,r)

L(1)
r −Qγ(L(2)

r) = E(si,r)

E(si,r)− L(1)
r +Qγ(L

(2)
r) = 0

(5.6)

Let pi,r be the equation 5.6 corresponding to the evaluation of the couple (L
(1)
r ,L

(2)
r). Using that

definition we can model every round 1 ≤ r ≤ N with l equations p1,r, p2,r, . . . , pl,r where pi,r ∈
K[y0, s1, . . . , sr−1, si,r]. In this way we obtain a total of N × l equations.

At the end, after the last rounds, the linear layer L is applied again. Therefore, by applying the

CICO output constraints, which set the first l outputs to 0, we can define the following equation:

xi,N+1 := L(x1, . . . ,xN ,y1, . . . ,yN) = 0 (5.7)

for all 1 ≤ i ≤ l where xi,N+1 ∈ K[y0, s1, . . . , sN]. With the last linear layer application we obtain other

l equations.

Thanks to that, we can define the PCICO model for arbitrary values of l.

Definition 2 (PCICO model for arbitrary l). An algebraic model of the Anemoi permutation Aπ :

K2l → K2l applied for N rounds, under the CICO constraints in Equation 5.2, is given by the system

PCICO = {p1, . . . ,pN ,xN+1}

where PCICO ⊂ K[y0, s1, . . . , sN] and pi,r defined as in Equation 5.6 and xi,N+1 as in Equation 5.7. The

generated system contains lN + l equations in lN + l variables.

Equations degree analysis for q = p prime

To make a complete analysis of the PCICO model, we give a detailed inspection of the degrees of the

polynomials we defined in Subsection 5.4.1 with respect to a field of characteristic p prime for which

deg(Qγ) = deg(Qδ) = 2.

5.4 Modelling phase 53

Let consider the equation xi,r given in Equation 5.4:

xi,r = L(1)
r −Qγ(L(2)

r) +Qδ(L
(2)
r − si,r)

xi,r = L(1)
r − β(L(2)

r)2 − γ + β(L(2)
r)2 + βs2i,r − 2βL(2)

r si,r + δ

xi,r = L(1)
r + βs2i,r − 2βL(2)

r si,r − γ + δ

(5.8)

We can notice that the leading terms of Qγ and Qδ cancel out, meaning that, since L
(1)
r ,L

(2)
r ∈

K[y0, s1, . . . , sr−1] and deg(L
(1)
r) = deg(L

(2)
r):

deg(xi,r) = max{deg(L(1)
r), deg(L(2)

r si,r), deg(s
2
i,r)} = deg(L(2)

r) + 1

deg(yi,r) = max{deg(L(2)
r), deg(si,r)} = deg(L(2)

r)
(5.9)

Recursively, deg(L
(1)
r) and deg(L

(2)
r) depend on deg(xr−1) and deg(yr−1):

deg(L(2)
r) = deg(L(1)

r)

= max{deg(xr−1), deg(yr−1)}

= max{deg(gr−1)}+ 1 = r

The last result follows from max{deg(g1)} = 1. Therefore, taking all these results into account, we can

define the following degrees for the PCICO model equations:

⎧⎨⎩deg(pi,r) = max{α, deg(Qγ) · deg(L(2)
r), deg(L

(1)
r)} = max{α, 2r}

deg(xi,N+1) = max{deg(xi,N), deg(yi,N)} = deg(gi,N) + 1 = N + 1
(5.10)

for 1 ≤ i ≤ l and 1 ≤ r ≤ N .

5.4.2 FCICO Model

Differently from the PCICO model, the FCICO unknowns will be both si,r, both yi,r for each 1 ≤ i ≤ l

and 1 ≤ r ≤ N + 1.

Polynomials representation

For each 1 ≤ r ≤ N , let L
(2)
r and yi,r be the inputs to the non-linear verification layer V in the r-th

round. Notice that this operation is performed for each couple (L
(2)
r , yi,r) for 1 ≤ i ≤ l. It outputs the

functions L
(1)
r , xi,r where: [︄

L
(1)
r

xi,r

]︄
:= V (L(2)

r , yi,r) =

[︄
Qγ(L

(2)
r) + E(si,r)

Qδ(yi,r) + E(si,r)

]︄

By that definition, L
(2)
r ∈ K[xr−1,yr−1, sr−1], then xi,r ∈ K[yi,r, si,r] and L

(1)
r ∈ K[xr−1,yr−1, sr−1, si,r]

for 1 ≤ r ≤ N and 1 ≤ i ≤ l. By applying the CICO input constraint we defined above, rather is fixing

xi,0 = 0 for all 1 ≤ i ≤ l, we get the first equation of our system.

54 Chapter 5 — Application to ANEMOI

q
(1)
i,1 := L(1)i,1 (0,y0)−Qγ

(︂
L(2)i,1 (0,y0)

)︂
− Sαi,1 (5.11)

for all 1 ≤ i ≤ l where L1
i,j and L

2
i,j are respectively the i-th element of the first and the second row of

the resulting matrix after the application of the linear layer at the round j.

Let mi,r := Qδ(yi,r−1) + E(si,r−1), then, the other equations are similarly defined, but they involve

the previous variables as follows:

q
(1)
i,r := L(1)i,r

(︁
mr,yr−1

)︁
−Qγ

(︂
L(2)i,r

(︁
mr,yr−1

)︁)︂
− Sαi,r (5.12)

for all 1 ≤ i ≤ l and 1 < r ≤ N .

Additionally, for each round 1 ≤ r ≤ N , we need to link the variables yr−1, yi,r and si,r with the

following equations which take care of the effect of the function E:

q
(2)
i,r :=

(︂
L(2)i,r

(︁
mr,yr−1

)︁
− yi,r

)︂α
− sαi,r (5.13)

By doing so, we obtain 2l equations per round, meaning 2Nl equations. At the end, after the last

rounds, the linear layer L is applied again. Then, the last l equations are of the form:

fi,N+1 = L(1)i,N (mN ,yN) (5.14)

which are equal to zero with respect to the CICO constraints.

Definition 3 (FCICO model for arbitrary l). An algebraic model of the Anemoi permutation Aπ :

K2l → K2l applied for N rounds, under the CICO constraints in Equation 5.2, is given by the system

FCICO = {q(1)1 , . . . , q
(1)
N , q

(2)
1 , . . . , q

(2)
N , fN+1}

where FCICO ⊂ K[y0, . . . ,yN , s1, . . . , sN], q
(1)
i,r is defined as in Equation 5.12, q

(2)
i,r is defined as in

Equation 5.13 and fi,N+1 as in Equation 5.14. The generated system contains l(2N + 1) equations in

l(2N + 1) variables.

Equations degree analysis for q = p prime

To make a complete analysis of the FCICO model, we give a detailed inspection of the degrees of the

polynomials we defined in Subsection 5.4.3 with respect to a field of characteristic p prime for which

deg(Qγ) = deg(Qδ) = 2.

Let consider the equation q
(1)
i,1 given in Equation 5.11. L

(1)
i,1 and L

(2)
i,1 depend on the degree 1 variables

y0. It means that

deg(qi,1) = max{deg(y0), deg(y0)
2, deg(si,1)

α} = α (5.15)

Now, let consider the equation q
(1)
i,r with 1 < r ≤ N given in Equation 5.12. The sub-equation

mi,r := Qδ(yi,r−1) + E(si,r−1) depends on the degree 1 variables y1,r−1 and s1,r−1. Then deg(mi,r) =

max{deg(yi,r−1)
2, deg(si,r−1)

α} = α.

5.4 Modelling phase 55

As a consequence, the degree of qi,r is:

deg(q
(1)
i,r) = max{deg(mr), deg(mr)

2, deg(si,r−1)
α} = 2α (5.16)

The same can be done for equation q
(2)
i,r for 1 ≤ r ≤ N (Equation 5.13). Its degree is:

deg(q
(2)
i,r) = max{deg(mr)

α, deg(yr−1)
α, deg(si,r)

α} = α2 (5.17)

Finally, the degree of the last equations, given by the additional application of the linear layer

(Equation 5.14), is:

deg(fi,N+1) = max{deg(mN), deg(yN)} = α (5.18)

Therefore, taking all these results into account, we can define the following degrees for the FCICO

model equations: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

deg(q
(1)
i,1) = α

deg(q
(1)
i,r) = 2α for 1 < r ≤ N

deg(q
(2)
i,r) = α2 for 1 ≤ r ≤ N

deg(fi,N+1) = α

(5.19)

for 1 ≤ i ≤ l.

5.4.3 ACICO model

Polynomials representation

We can define the following functions for every 1 ≤ r ≤ N :

1) Let L
(2)
i,r and yi,r be the inputs to the non-linear verification layer V in the r-th round. Notice that

this operation is performed for each couple (L
(2)
i,r , yi,r) for 1 ≤ i ≤ l. It outputs L

(1)
i,r , xi,r where:[︄

L
(1)
i,r

xi,r

]︄
:= V (L

(2)
i,r , yi,r) =

[︄
Qγ(L

(2)
i,r) + E(si,r)

Qδ(yi,r) + E(si,r)

]︄

By that definition:

• for r = 1 and 1 ≤ i ≤ l, L(2)
i,1 ∈ K[x0,y0], xi,1 ∈ K[yi,1, si,1] and L

(1)
i,1 ∈ K[x0,y0, si,r]

• for 1 < r ≤ N and 1 ≤ i ≤ l, L
(2)
i,r ∈ K[xr−1,yr−1, sr−1], xi,r ∈ K[yi,r, si,r] and L

(1)
i,r ∈

K[xr−1,yr−1, sr−1, si,r]

By applying the input constraint, that is setting xi,0 = 0 for all 1 ≤ i ≤ l, we get the first family of

polynomials

ai,1 := L(1)i,1 (0,y0)−Qγ
(︂
L(2)i,1 (0,y0)

)︂
− sαi,1, where 1 ≤ i ≤ l. (5.20)

56 Chapter 5 — Application to ANEMOI

Assuming mi,r := Qδ(yi,r−1) + E(si,r−1), we get

ai,r := L(1)i,r (mr,yr−1)−Qγ
(︂
L(2)i,r (mr,yr−1)

)︂
− sαi,r (5.21)

where 1 ≤ i ≤ l and 1 < r ≤ N . Thus we have deg(ai,1) = α. Since deg(mi,r) = α and Li,r is a linear

function we have

deg(ai,r) = max{deg(mr), deg(mr)
2, deg(si,r−1)

α} = 2α

Additionally, for each round, from the relations of the variables yr−1, yi,r and si,r we get

bi,1 := L(2)i,1 (0,y0)− yi,1 − si,1, for r = 1 (5.22)

bi,r := L(2)i,r (mr,yr−1)− yi,r − si,r, for 1 < r ≤ N (5.23)

From the above two equations it is clear that deg(bi,1) = 1, and deg(bi,r) = max{α, 1} = α.

Thus, we obtain 2l polynomials per round given by ai,r, bi,r (for 1 ≤ i ≤ l) i.e. 2Nl equations overall.
At the end, after the last rounds, the linear transformation L is applied. This leads to l equations of

the form:

fi,N+1 := L(1)i,N (mN+1,yN) (5.24)

which are equal to zero due to constrained output and deg(fi,N+1) = α.

Definition 4 (ACICO model for l ≥ 1). An algebraic model of the Anemoi permutation Aπ : K2l →
K2l applied for N rounds, under the CICO constraints in Equation 5.2, is given by the system

ACICO = {a1, . . . ,aN , b1, . . . , bN , fN+1}

where ACICO ⊂ K[y0, . . .yN , s1, . . . , sN] and ai,r, bi,r, fi,N+1 are as defined in eq. (5.21), eq. (5.23),

eq. (5.24) respectively. The generated system contains l(2N + 1) equations in l(2N + 1) variables.

Degrees of polynomials

For GB analysis with ACICO model, we require the degrees of the polynomials in ACICO, that are as

follows

deg(ai,1) = α, deg(bi,1) = 1, deg(fi,N+1) = α (5.25)

deg(ai,r) = 2α, deg(bi,r) = α (5.26)

for 1 ≤ i ≤ l and 1 < r ≤ N .

5.5 Gröbner basis cryptanalysis against Anemoi

In this section we describe the Gröbner basis cryptanalysis of Anemoi. In particular, we will show what

is the particular structure of the DRL Gröbner basis generated by the ACICO polynomials and how

5.5 Gröbner basis cryptanalysis against Anemoi 57

we can avoid converting it to a LEX Gröbner basis to obtain a univariate polynomial. At the end, we

compare our results to previous ones.

5.5.1 Gröbner basis for Anemoi

Here, we show the structural properties of the polynomials in the GB of the ideal ⟨ACICO⟩ w.r.t DRL

monomial ordering. We use LMk(f) to denote the kth (≥ 2) monomial of the polynomial f , as already

done in Chapter 2.

Proposition 1. DRL Basis structure for α = 3 Let F be the system of polynomials generated by the

ACICO model and I the corresponding ideal. For α = 3, the DRL Gröbner basis GDRL of I contains a

well-structured set of polynomials. In particular, they always have polynomials of the following form:

• l equations of degree 1 whose leading terms are yi,0 for all 1 ≤ i ≤ l:

gi,0 := yi,0 +Q(y1, s1)

for 1 ≤ k ≤ l, where LM(Q) = y1,1 and the other monomials are linear terms.

• Nl equations of degree α whose leading term is yαi,j for all 1 ≤ i ≤ l and 1 ≤ j ≤ r:

g′i,j := yαi,j +Q(si,j , sj+1,yj−1,yj ,yj+1)for 1 ≤ k ≤ l

for l < k ≤ Nl + l, where LM(Q) = y
⌊α
2
⌋+1

i,j−1 s
⌊α
2
⌋

i,j and the remaining monomials define a generic

polynomial up to degree α.

• Nl equations of degree α whose leading term is sαi,j for all 1 ≤ i ≤ l and 1 ≤ j ≤ r:

gi,j := sαi,j +Q(yj ,yj+1, sj+1)

for Nl + l < k ≤ 2Nl + l, where LM(Q) = y2i,j and the other monomials are linear terms.

• Nl of degree 2 whose leading terms are yi,jsi,j for all 1 ≤ i ≤ l and 1 ≤ j ≤ N :

g′′i,j := yi,jsi,j +Q(si,j , sj+1,yj−1,yj ,yj+1)

for 2Nl + l < k ≤ 3Nl + l, where LM(Q) = s2i,j and the other monomials are linear terms.

Notice that when j = N , the variables sN+1 and yN+1 do not exist, meaning that the equation depend

only on the remaining variables. Moreover, the complexity of computing the Gröbner basis is given by

O(poly1(l)N − poly2(l)
2

)

field operations where poly1(l) = l(24l4+40l3+45l2+16l−1) and poly2(l) = l(17l4+4l3+26l2+16l+1).

The given complexity does not take care of the final reductions to obtain a reduced Gröbner basis.

Remark 1. DRL Basis structure for α = 5, 7, 11 Let F be the system of polynomials generated by

the ACICO model and I the corresponding ideal. For α = 5, 7, 11, the DRL Gröbner basis GDRL of I

58 Chapter 5 — Application to ANEMOI

contains the polynomials gi,j defined in Proposition 1 plus other polynomials which are useful to shorten

the quotient ring basis and obtain the minimum univariate polynomial degree needed in 5.5.2.

As pointed out by Remark 1, due to the DRL monomial ordering, we are not able to perfectly describe

the structure of the Gröbner basis for α = 5, 7, 11. The issue comes from the fact that sα ≺DRL y
2.

To circumvent this issue we can introduce a weighted monomial ordering, denoted as WDRL, such

that y2 ≺WDRL
sα. In particular, we want to define weights such that 2w(y) ≥ αw(s). Therefore,

w(s) = 2k → w(y) = αk.

Definition 5 (Weighted monomial ordering for Anemoi). The following definition is an instan-

tiation of Definition 11. Let w = (w0, w1) ∈ R2, where wj ̸= 0 for j = 0, 1. We define ≺WDRL
to be

the weighted DRL monomial order defined by weights w0, w1, where w0 is the weight associated with the

variables yi,r for 1 ≤ i ≤ l and 0 ≤ r ≤ N and w1 is the weight associated with the variables si,r for

1 ≤ i ≤ l and 1 ≤ r ≤ N . Moreover, we constrain the weights to satisfy the following inequality:

2w0 ≥ αw1.

Given two monomials M0 and M1, let k
(0)
y and k

(1)
y be the number of variables yi,r in M0 and M1.

Furthermore, k
(0)
s and k

(1)
s are the number of variables si,r in M0 and M1. We say that:

M0 :=

k
(0)
y∏︂
i=1

ye
(0)
i

k
(0)
s∏︂
i=1

su
(0)
i ≺WDRL

k
(1)
y∏︂
i=1

ye
(1)
i

k
(1)
s∏︂
i=1

su
(1)
i⇑⃦⇓⎧⎨⎩

∑︁k
(0)
y

i=1 w0e
(0)
i +

∑︁k
(0)
s
i=1 w1u

(0)
i >

∑︁k
(1)
y

i=1 w0e
(1)
i +

∑︁k
(1)
s
i=1 w1u

(1)
i∑︁k

(0)
y

i=1 w0e
(0)
i +

∑︁k
(0)
s
i=1 w1u

(0)
i =

∑︁k
(1)
y

i=1 w0e
(1)
i +

∑︁k
(1)
s
i=1 w1u

(1)
i ,M0 ≺revlex M1

Proposition 2. WDRL Basis structure for α = 5, 7, 11 Let F be the system of polynomials generated

by the ACICO model and I the corresponding ideal. For α = 5, 7, 11, the WDRL Gröbner basis GWDRL

of I contains a well-structured set of polynomials. In particular, they always have polynomials of the

following form:

• l equations of degree 1 whose leading terms are yi,0 for all 1 ≤ i ≤ l:

gi,0 := yi,0 +Q(y1, s1)

for 1 ≤ k ≤ l, where LM(Q) = y1,1 and the other monomials are linear terms.

• Nl equations of degree α+ 1 whose leading term is sα+1
i,j for all 1 ≤ i ≤ l and 1 ≤ j ≤ r:

g′i,j := sα+1
i,j +Q(si,j , sj+1,yj−1,yj ,yj+1)for 1 ≤ k ≤ l

for l < k ≤ Nl + l, where LM(Q) = y1,j−1yi,j and the remaining monomials define a generic

polynomial up to degree α.

5.5 Gröbner basis cryptanalysis against Anemoi 59

• Nl equations of degree 2 whose leading term is y2i,j for all 1 ≤ i ≤ l and 1 ≤ j ≤ r:

gi,j := y2i,j +Q(sαi,j , yl−i−1,j ,yj+1, sj+1)

for Nl + l < k ≤ 2Nl + l, where LM(Q) = sαi,j and the other monomials are linear terms.

• Nl of degree 2 whose leading terms are yi,jsi,j for all 1 ≤ i ≤ l and 1 ≤ j ≤ N :

g′′i,j := yi,jsi,j +Q(si,j , sj+1,yj−1,yj ,yj+1)

for 2Nl + l < k ≤ 3Nl + l, where LM(Q) = y1,j−1 and the other monomials are linear terms.

Notice that when j = N , the variables sN+1 and yN+1 do not exist, meaning that the equation depend

only on the remaining variables.

5.5.2 Univariate polynomial finding

For obtaining the univariate polynomial(s), we can mainly use two different approaches

• Basis conversion: converting GDRL to GLEX using SparseFGLM.

• Eigenvalue method: applying one of the following methods:

– computing det(xiIdI − Ti) that we refer as polyDet (following [3]).

– applying Wiedemann algorithm that we call linSeq (since it generates a linearly recurring

sequence from the multiplication matrix Ti)

Change of basis by SparseFGLM One common approach is to apply the FGLM [20] algorithm to

convert GDRL to GLEX. In particular, due to the sparsity of the polynomials involved, we can apply

SparseFGLM [21], whose complexity is:

O(nv · dωI log(dI)) (5.27)

operation in K, where ω is the linear algebra constant which, in our case, is theoretically bounded

by 2 ≤ ω ≤ 2.3727 [44]. dI = dimK(R/I) is the dimension of the quotient ring R/I and a good

approximation of this value is necessary to precisely define the security of Anemoi. By applying that

algorithm we obtain a Gröbner basis GLEX containing a univariate polynomial in the smallest variable.

As we already know, the complexity of SparseFGLM can also be defined in terms of the sparsity of the

involved matrices:

O(dI(Z + nv log(dI))) (5.28)

where Z is the number of non-zero entries. This way of representing the complexity of SparseFGLM

permits to compare that method with the iterated application of the Wiedemann algorithm, as we

discussed in Chapter 4.

60 Chapter 5 — Application to ANEMOI

Eigenvalue method with polyDet The SparseFGLM introduces a lot of unnecessary computations

with respect to our objective namely, finding possible values for the inputs y1,0, . . . , yl,0. Instead of using

SparseFGLM we can compute the multiplication matrix of the l variables we are interested in and, for

each of them, compute det(yi,0IdI − Ti) for 1 ≤ i ≤ l. To compute such determinant we can apply the

Labahn et al. algorithm [30] whose complexity is given by

O(dωI ⌈s⌉)

where s is the mean of the column degrees. As a consequence, if we use that method to find l univariate

polynomials, the overall complexity of polyDet becomes

O(l · dωI).

Further details will be given in Section 5.6.

Eigenvalue method with Wiedemann algorithm A third option which can save a lot of unnec-

essary computations is given by the Wiedemann algorithm. Indeed, we can compute the multiplication

matrix of the l variables we are interested in and, for each of them, generate a linearly recurring se-

quence to determine, thanks to the Berlekamp-Massey algorithm [5], its minimal polynomial [21, 25].

In Chapter 3 we presented the two versions of the Wiedemann algorithm. In our analysis, we use the

probabilistic version (Algorithm 8) whose runtime complexity is bounded by

O(dI(Z + log(dI))) (5.29)

operation in K, where Z is the number of non-zero entries in Ti. The probability of success of the

probabilistic algorithm is very high, close to 1 in our case, and it is given by:

Pq(n) =

⎧⎨⎩(1− 1
q)

2n if q ≥ N

(1− 1
q)

2q(1− 1
q2
)n−q if

√
n ≤ q < n

(5.30)

where q is the field cardinality and n is the matrix dimension [25].

By applying that method for all the l input/target variables, the overall complexity becomes:

ldI(Z + log(dI)) (5.31)

On the value of dI The dimension dI is crucial in determining the complexity of obtaining univariate

polynomial. In [29] dI for Anemoi is conjectured as dI = (α+2)N for l = 1 with experimental evidences.

We prove and extend this conjecture.

Proposition 3. Let N be the number of rounds of Anemoi for l ≥ 1 and α = 3 (resp. α = 3, 5, 7, 11).

The dimension of the quotient ring basis of the DRL Gröbner basis (resp. WDRL Gröbner basis) with

respect to the instance Anemoi(N , α, l) is:

dI = |BGDRL | = |BGWDRL
| := (α+ 2)Nl

5.5 Gröbner basis cryptanalysis against Anemoi 61

Proof. We need to distinguish two cases:

DRL From Proposition 1, we know that GDRL will be composed by:

1) l equations of degree 1 whose leading terms are yi,0 for all 1 ≤ i ≤ l.

2) 2Nl equations of degree α whose leading term is yαi,j or s
α
i,j for all 1 ≤ i ≤ l and 1 ≤ j ≤ N .

3) Nl equations of degree 2 whose leading terms are yi,jsi,j for all 1 ≤ i ≤ l and 1 ≤ j ≤ N .

We are interested in defining the quotient ring basis BGDRL . Due to the fact that the equations

from point 1 have got degree 1, we can directly skip them. By considering the equations given at

point 2 we would define a quotient ring basis made by α2Nl monomials. But, by point 3, we have to

remove all the monomials which are multiples of the leading monomials of the equations at point

3, which act as filter equations: e.g. if y2i,js
2
i,j ∈ BGDRL , due to the fact that yi,jsi,j is the leading

monomial of one of those equations, we must remove it from BGDRL . In order to directly count the

cardinality of the final quotient ring basis, we need to consider what are the possible monomials

ya0i,js
a1
i,jQ, where Q is a polynomial depending on other variables and a0, a1 ∈ [0, . . . , α− 1], which

are not deleted by equations at point 3. For each monomial of that kind:

– if a0 > 0, then a1 = 0 and the possible couples of degrees are: [1, 0], [2, 0].

– if a1 > 0, then a0 = 0 and the possible couples of degrees are: [0, 1], [0, 2].

– the last possibility is a0 = 0 and a1 = 0: [0, 0].

For each couple (yi,j , si,j), we have 2(α− 1) + 1 = 2α− 1 possible combinations. Due to the fact

that α = 3, 2α − 1 = α + 2. We have Nl couples, then the possible valid monomials within the

quotient ring basis are in total (α+ 2)Nl.

WDRL From Proposition 2, we know that GWDRL
will be composed by:

1) l equations of degree 1 whose leading terms are yi,0 for all 1 ≤ i ≤ l.

2) Nl equations of degree 2 whose leading term is y2i,j for all 1 ≤ i ≤ l and 1 ≤ j ≤ N .

3) Nl equations of degree α+ 1 whose leading term is sα+1
i,j for all 1 ≤ i ≤ l and 1 ≤ j ≤ N .

4) Nl of degree 2 whose leading terms are yi,jsi,j for all 1 ≤ i ≤ l and 1 ≤ j ≤ N .

We are interested in defining the quotient ring basis BGWDRL
. As done for the previous case,

we can directly skip equations at point 1. By considering only the equations at points 2 and 3,

we would define a quotient ring basis made by 2NlαNl monomials. But, by point 4, we have to

remove all the monomials which are multiples of the leading monomials of the equations at point

4: e.g. if y2i,js
2
i,j ∈ BGWDRL

, due to the fact that yi,jsi,j is the leading monomial of one of those

equations, we must remove it from BGWDRL
. In order to directly count the cardinality of the final

quotient ring basis, we need to consider what are the possible monomials ya0i,js
a1
i,jQ, where Q is

a polynomial depending on other variables and a0 ∈ {0, 1} and a1 ∈ {0, . . . , α}, which are not

deleted by equations at point 4. For each monomial of that kind:

62 Chapter 5 — Application to ANEMOI

– if a0 > 0, then a1 = 0 and the possible couples of degrees are:

[1, 0] (1 couple).

– if a1 > 0, then a0 = 0 and the possible couples of degrees are:

[0, 1], [0, 2], . . . , [0, α] (α couples).

– the last possibility is a0 = 0 and a1 = 0:

[0, 0] (1 couple).

For each couple (yi,j , si,j), we have α + 2 possible combinations. We have Nl couples, then the

possible valid monomials within the quotient ring basis are in total (α+ 2)Nl.

Due to the fact that our target variables are involved only in the degree 1 polynomials, their multi-

plication matrix dimension will represent the degree of the associated univariate polynomial, that is also

the number of roots. The dimension of the multiplication matrix is the dimension of the quotient ring

basis, that is composed by all the monomials which are not multiples or a composition of the elements

in LM(I), where I is, in our case, the DRL or the WDRL Gröbner Basis. The obtained result validates

and generalizes the conjecture given by [29] for the case l = 1.

5.5.3 Polynomial Factorization or Root Finding

For Anemoi cryptanalysis (or for GB cryptanalysis in general) this part corresponds to finding the

collision or preimage (resp. finding solution(s) to the polynomial system). The input to this section is

the univariate polynomial obtained in the previous one. To find its roots, we can simply apply one of

the off-the-shelf factorization algorithms. As we have seen in Section 4.2, there exist several choices.

However, since we are dealing with finite fields, the latter one gives the best complexity. Therefore, for

our analysis, we choose the Kaltofen-Shoup probabilistic algorithm, whose probabilistic complexity is

given by

d1.815 log(q) (5.32)

where d is the degree of the univariate polynomial and q is the field characteristic.

Root finding To determine the complexity of finding the solutions to the system of polynomials, we

need to figure out if we are dealing with an ideal in Shape Position, if we have a particular structure to

exploit or if we must apply the methods in 5.5.2 for each variable. The Shape form for Anemoi has been

conjectured by experimental results (even if a formal proof would be preferred). As a result, it is possible

to apply SparseFGLM, getting, in this way, the only univariate polynomial required to find the complete

variety of the analysed system. Due to the fact that we don’t need to determine the solutions for all the

variables involved in the system, but only for the input variables, we can exploit other methods.

Instead of using SparseFGLM the eigenvalue methods can be applied for each variable, leading to a

5.5 Gröbner basis cryptanalysis against Anemoi 63

complexity of

O(nv · dωI)

for polyDet and

O(nvdI(Z + log(dI)))

for the Wiedemann algorithm, where nv is the number of variables of the system. As a result of

this process, we find nv univariate polynomials whose roots can be computed with the factorization

algorithms above. Fortunately, the system of polynomials defined by ACICO has a particular structure

which can be exploited to avoid the computation of many univariate polynomials. We can just compute l

univariate polynomials with the eigenvalue methods, factorize them and find the values for the remaining

variables by using gcd (resp. Gaussian elimination) if l = 1 (resp. l > 1). Theorem 5 and Corollary 1

from [12] work on LEX Gröbner basis, but the algorithm proposed in Corollary 1 can be easily extended

to our case. The polynomials in the DRL Gröbner basis given in Proposition 1 can be sorted with

respect to the number and the type of variables they depend on:

• l equations which depend only on l + 1 variables:

gi,N (si,N ,yN) where LM(gi,N) = sαi,N

• 2l equations which depend on 2l + 1 variables:

g′i,N (si,N ,yN−1,yN) where LM(g′i,N) = yαi,N

g′′i,N (si,N ,yN−1,yN) where LM(g′′i,N) = yi,Nsi,N

• l equations which depend on 3l + 1 variables:

gi,N−1(si,N−1,yN−1,yN , sN) where LM(gi,N−1) = sαi,N−1

• 2l equations which depend on 4l + 1 variables:

g′i,N−1(si,N−1, sN ,yN−2,yN−1,yN) where LM(gi,N) = yαi,N−1

g′′i,N−1(si,N−1, sN ,yN−2,yN−1,yN) where LM(g′′i,N) = yi,N−1si,N−1

• . . .

• l equations which depend on 3l + 1 variables:

gi,j(si,j ,yj ,yj+1, sj+1) where LM(gi,j) = sαi,j

• 2l equations which depend on 4l + 1 variables:

g′i,j(yj−1,yj ,yj+1, sj+1, si,j) where LM(g′i,j) = yαi,j

g′′i,j(yj−1,yj ,yj+1, sj+1, si,j) where LM(g′′i,j) = yi,jsi,j

64 Chapter 5 — Application to ANEMOI

• . . .

• l equations which depend on 2l + 1 variables:

gi,0(yi,0, s1,y1) where LM(gi,0) = yi,0

To apply a modified version of Corollary 1 from [12], we need to find at least l univariate polynomials

that depend on the variables yi,N for 1 ≤ i ≤ l. Those polynomials, which we will denote as hi(yi,N), can

be computed by using the methods discussed in 5.5.2 (Wiedemann algorithm, polyDet). We add them

to the equations above in order to obtain the desired form. The procedure to compute the variety of the

ideal generated by the DRL basis of Anemoi with respect to the ACICO modelling is given in Algorithm

14. The same can be done for the WDRL basis given in Proposition 2 due to the similar structure of the

generated equations.

Remark 2. For l = 1, the previous algorithm can be simplified by substituting the linear system solving

procedure with the gcd computation as in Corollary 1 from [12]. On the other hand, due to the fact

that the equations generated in Steps 6, 9, etc... are degree 1 polynomials, we can simply solve one of

the equations to get the value of the unknown variable.

The complexity of this algorithm depends on the computation of the required l univariate polynomials

for which we can choose one of the algorithms previously presented. The other operations are negligible

with respect to that one. Indeed, the complexity of solving a linear system of l equations in l unknowns

is in the worst case O(l3). Moreover, if l = 1, we deal with 2 equations of degree 1 in 1 unknown,

meaning that its solution comes for free.

5.6 Theoretical results

In this section we discuss the complexities for the first two steps of the Gröbner basis cryptanalysis

methodology with respect to Anemoi.

5.6.1 Gröbner basis computation complexity

Propositions 1 and 2 show that the Gröbner basis computation complexity, with respect to the system

generated by the ACICO model, polynomially depends on the number of branches l and number of

rounds N . Therefore, due to the fact that such result makes the complexity of computing the GB

“negligible” with respect to the computation of the univariate polynomial, it is not a good choice to

make the security of Anemoi relying on that complexity bound. Moreover, our experimental results

heavily support our choice. As a consequence, we will consider a threat model where the attacker is

always able to efficiently compute the GB, focusing our attention on the second step of the Gröbner

basis attack, meaning the univariate polynomial finding.

5.6.2 Univariate polynomial finding complexities

We firstly present the results with ω = 2.8074 and, in particular, we show how this complexity can be

improved by using the Wiedemann algorithm. Secondly, from a designer point-of-view, we present the

5.6 Theoretical results 65

Algorithm 14 Solutions of the polynomial system

Let IDRL ⊂ R be the ideal generated by the DRL basis of Anemoi with respect to the ACICO represen-
tation. V(IDRL) can be computed as follows:

1. Compute the univariate polynomials hi(yi,N) for 1 ≤ i ≤ N by using polyDet or Wiedemann

algorithm.

2. Find the roots of the univariate polynomials, that is finding a set of solutions for each of the
variables yi,N .

3. If ∃ hi such that hi is irreducible, V(IDRL) = ∅ else, compute the Cartesian product between those
sets.

4. For each tuple of roots τ = (τ1, . . . , τl) in the Cartesian product, compute:

pi,N = gi,N (si,N , τ)

for 1 ≤ i ≤ l.

5. Compute the roots of pi,N for 1 ≤ i ≤ l to find the possible values of si,N . If ∃ pi,N irreducible,
V(IDRL) = ∅ else compute the Cartesian product between the found sets of roots.

6. For each tuple of roots τ ′ = (τ ′1, . . . , τ
′
l) in the Cartesian product, compute the system of 2l linear

equations:
{g′i,N (yN−1, τ

′
i , τ), . . . , g

′′
i,N (yN−1, τ

′
i , τ)}

where 1 ≤ i ≤ l. Solve the system of 2l equations in l unknowns (we just need l equations) and
get the new set of roots τ ′′ = (τ ′′1 , . . . , τ

′′
l).

7. Compute
pi,N−1 = gi,N−1(si,N−1, τ, τ

′, τ ′′)

for each 1 ≤ i ≤ l.

8. Compute the roots pi,N−1 for 1 ≤ i ≤ l. If ∃ pi,N−1 irreducible, V(IDRL) = ∅ else compute the
Cartesian product between the found sets of roots.

9. For each tuple of roots τ ′′′ = (τ ′′′1 , . . . , τ
′′′
l) in the Cartesian product, compute the system of 2l

linear equations:
{g′i,N−1(yN−2, τ

′′′
i , τ

′, τ), . . . , g′′i,N−1(yN−2, τ
′′′
i , τ

′, τ)}

where 1 ≤ i ≤ l. Solve the system in l unknowns as done in step 6 and get the new set of roots
τ ′′′′ = (τ ′′′′1 , . . . , τ ′′′′l).

10. Proceed similarly for the other polynomials gi,j , g
′
i,j , g

′′
i,j for 1 ≤ i ≤ l and 1 ≤ j ≤ N − 2.

11. At the end, consider the polynomials gi,0. If we reached this step, it means that we know values
for each of the variables they depend on. Being equations of degree 1, the values of the variables
yi,0 are easy to find by substitution.

66 Chapter 5 — Application to ANEMOI

results for ω = 2 and the required number of rounds to reach the claimed security level with respect

to that conservative and designing choice. We will denote by Calg the complexity of the considered

algorithms. In particular, Calg ∈ {CFGLM , CpolyDet, ClinSeq}, where CFGLM , CpolyDet, ClinSeq, denote
respectively the FGLM (basis conversion), the determinant computation and the Wiedemann algorithm

complexities.

In the attack of Koschatko et al. [29] the dominating complexity is represented by the Gröbner basis

computation CGB, even if their experimental results showed the opposite. Table 5.2 presents their results

showing the security level reached by the standard number of rounds of Anemoi. On the other hand,

Bariant et al. [3] present the attack based on the construction of the FreeLunch systems (see Appendix

A). In this case, the dominating complexity is represented by the matrix determinant computation

CpolyDet. Table 5.2 summarizes their results showing the achieved security level with respect to the

standard number of rounds of Anemoi. From a designer perspective it is important to notice that,

whilst Koschatko et al. used ω = 2 as a conservative choice, Bariant et al. gave a more practical result

by using ω = 2.8074, that is the algebra constant for the currently best known algorithm for matrix

multiplication.

Koschatko et al. [29] (ω = 2) Bariant et al. [3] (ω = 2.81)

Security claim α = 3 α = 5 α = 7 α = 11 α = 3 α = 5 α = 7 α = 11

128 117 (21) 144 (21) 152 (20) 152 (19) 118 (21) 156 (21) 174 (20) 198 (19)

256 210 (37) 257 (37) 277 (36) 280 (35) 203 (37) 270 (37) 307 (36) 358 (35)

Table 5.2: Complexity of the existing Gröbner Basis attacks for l = 1. The number of rounds is given
in brackets. The two articles used different values of ω.

As discussed above, in our setting, the dominating complexity is represented by one of the method-

ologies (CFGLM , CpolyDet, ClinSeq) we applied for the second step of the Gröbner basis attack. Due to the

ACICO model, the improvements to CGB make that solution applicable to more than 2 branches

(l ≥ 1). Moreover, the usage of the Wiedemann algorithm gives us the possibility to fully exploit the

sparsity of the involved equations and multiplication matrices, leading to a significant improvement to

the currently known attacks.

Indeed, from Conjecture 1, we can define the complexity given in Equation 5.31 with respect to the

number of rounds of Anemoi. The complexity of the probabilistic algorithm, applied for l variables, is

O(ldI(Z + log(dI))) (5.33)

where dI · Z represents the complexity given by the generation of the linearly recurring sequence and

dI log(dI) is the complexity of the Berlekamp-Massey algorithm which finds the minimal polynomial [25]

[43]. The probability of success of the Wiedemann algorithm, given in Equation 5.30, depends on the

field size, but, if the conditions of Equation 5.30 are met, it is extremely high, close to 1. With this

method we can give a correct value for the complexity of the Wiedemann algorithm without depending

on the linear algebra constant, and we have seen that logdI (ClinSeq) get closer to the conservative choice

of ω = 2 when the number of rounds grow. From an experimental point of view, that result is more

5.6 Theoretical results 67

Security 128 256

α 3 5 3 5

l = 1
111 (21) 143 (21) 196 (37) 253 (37)

111 (21) 122 (18) 196 (37) 253 (37)

l = 2
171 (14) 212 (14) 269 (22) 335 (22)

122 (10) 120 (8) 245 (20) 243 (16)

l = 3
230 (12) 283 (12) 326 (17) 401 (17)

115 (6) 117 (5) 249 (13) 235 (10)

Table 5.3: Complexity given by linSeq, ldI(Z + log(dI)), with the Conjecture 1 on the sparsity level
of the matrices. The first line shows the complexity of the algorithm with respect to the number of
rounds of Anemoi and the second line shows the number of rounds whose complexity is below the target
security level.

applicable than polyDet and SparseFGLM (the sparsity of the matrices satisfies the condition given in

Section 4.2). Moreover, sparse matrices can be represented in the CSR format [32] which maintains

the amount of memory usage low with respect to keeping in memory the entire matrix. This, together

with the Keller-Gehrig algorithm [28] and the possibility of using the GPU to speed up the matrix-

vector multiplication [24] needed to determine the linearly recurring sequence, leads to the possibility

of experimentally applying that method also for larger matrices and more Anemoi rounds. Although, it

must be kept in mind that having more RAM would give the possibility to refine the results given in

Conjecture 1, leading to more accurate outcomes. Table 5.3 shows the complexity of the Wiedemann

algorithm, with the Conjecture 1, applied to the standard number of rounds of Anemoi for α = 3, 5.

For sake of completeness, we discuss also the complexities given by the application of the other two

methodologies for the univariate polynomial finding: SparseFGLM and polyDet.

Main differences with the polyDet method applied by [3] The main difference between the com-

plexity of the polyDet method applied in [3] and ours derives from the generated square multiplication

matrices. The one generated by the FreeLunch attack is bigger than the proved value of dI leading to

univariate polynomials of higher degree. Nevertheless, their method to compute the determinant works

on the top-right matrix of dimension αN (notice that l = 1 due to the fact that the FreeLunch method

is not extending to more than 2 branches) whose columns have maximum degree a value u0 defined as

in [3, Definition 15]. As a consequence, even if the computation of the determinant is slightly better, its

degree is higher than dI (as shown by [3] itself), making the last step of the Gröbner basis cryptanalysis

worst. In contrast, in our case, the maximum degree of each column of the matrix yi,0IdI −Ti is 1, then
the mean is 1·dI

dI
= 1, leading to a complexity of dωI for each input variable yi,0 where 1 ≤ i ≤ l and

to univariate polynomials of degree dI . As a result, for a generic value of l, that is we can apply that

method to more than 2 branches, the overall complexity of polyDet is O(l · dωI). Table 5.4 shows the

complexities given by polyDet when applied to the standard number of rounds of Anemoi.

68 Chapter 5 — Application to ANEMOI

Security 128 256

α 3 5 7 11 3 5 7 11

l = 1
136 (21) 165 (21) 177 (20) 197 (19) 241 (37) 291 (37) 320 (36) 363 (35)

123 (19) 126 (16) 124 (14) 124 (12) 241 (37) 252 (32) 249 (28) 249 (24)

l = 2
183 (14) 221 (14) 232 (13) 271 (13) 287 (22) 347 (22) 374 (21) 437 (21)

118 (9) 127 (8) 125 (7) 125 (6) 248 (19) 253 (16) 250 (14) 250 (12)

l = 3
236 (12) 285 (12) 321 (12) 344 (11) 334 (17) 403 (17) 455 (17) 531 (17)

118 (6) 119 (5) 108 (4) 126 (4) 255 (13) 238 (10) 241 (9) 250 (8)

Table 5.4: Complexity given by polyDet: dωI , for ω = 2.8074. The first line shows the complexity of the
algorithm with respect to the number of rounds of Anemoi, the second line shows the number of rounds
whose complexity is below the target security level.

On the usage of SparseFGLM From experimental results we conjectured that our ideal has Shape form,

therefore it makes sense to use the FGLM algorithm. However, due to the fact that the polynomials in the

computed GB (Propositions 1 and 2) and the multiplication matrices generated by those equations are

extremely sparse, we can apply the sparse version of the FGLM algorithm: SparseFGLM [21] (see Section

4.2). Table 5.5 shows the complexities given by SparseFGLM when applied to the standard number of

rounds of Anemoi. Moreover, it shows also the number of rounds whose SparseFGLM complexity is below

the target security level.

Security 128 256

α 3 5 7 11 3 5 7 11

l = 1
147 (21) 176 (21) 189 (20) 208 (19) 253 (37) 304 (37) 333 (36) 376 (35)

127 (18) 120 (14) 125 (13) 124 (11) 253 (37) 248 (30) 252 (27) 250 (23)

l = 2
194 (14) 232 (14) 243 (13) 282 (13) 299 (22) 360 (22) 387 (21) 450 (21)

127 (9) 120 (7) 116 (6) 113 (5) 247 (18) 248 (15) 243 (13) 240 (11)

l = 3
247 (12) 296 (12) 333 (12) 355 (11) 346 (17) 415 (17) 467 (17) 544 (17)

107 (5) 104 (4) 116 (4) 102 (3) 247 (12) 248 (10) 252 (9) 229 (7)

Table 5.5: Complexity given by deterministic SparseFGLM: nv · dωI · log(dI), for ω = 2.8074. The first
line shows the complexity of the algorithm with respect to the number of rounds of Anemoi, the second
line shows the number of rounds whose complexity is below the target security level.

5.6 Theoretical results 69

5.6.3 Design choices (conservative approach)

Usually, from a designer point-of-view, it is better to apply a conservative approach while defining

the security of a proposed primitive. Therefore, in Tables 5.6 and 5.7, we show the complexities of

SparseFGLM and polyDet with respect to ω = 2.

Security 128 256

α 3 5 7 11 3 5 7 11

l = 1
108 (21) 129 (21) 138 (20) 152 (19) 184 (37) 220 (37) 241 (36) 272 (35)

108 (21) 123 (20) 125 (18) 121 (15) 184 (37) 220 (37) 241 (36) 249 (32)

l = 2
141 (14) 169 (14) 176 (13) 204 (13) 217 (22) 260 (22) 279 (21) 324 (21)

122 (12) 123 (10) 125 (9) 114 (7) 217 (22) 249 (21) 254 (19) 249 (16)

l = 3
179 (12) 215 (12) 241 (12) 257 (11) 250 (17) 300 (17) 337 (17) 391 (17)

122 (8) 112 (6) 125 (6) 121 (5) 250 (17) 249 (14) 241 (12) 234 (10)

Table 5.6: Complexity given by deterministic SparseFGLM: nv · dωI · log(dI), for ω = 2. The first line
shows the complexity of the algorithm with respect to the number of rounds of Anemoi, the second line
shows the number of rounds whose complexity is below the target security level.

Security 128 256

α 3 5 7 11 3 5 7 11

l = 1
97 (21) 117 (21) 126 (20) 140 (19) 171 (37) 207 (37) 228 (36) 259 (35)

97 (21) 117 (21) 126 (20) 125 (17) 171 (37) 207 (37) 228 (36) 251 (34)

l = 2
131 (14) 158 (14) 165 (13) 193 (13) 205 (22) 248 (22) 267 (21) 311 (21)

121 (13) 124 (11) 127 (10) 119 (8) 205 (22) 248 (22) 254 (20) 252 (17)

l = 3
168 (12) 203 (12) 229 (12) 245 (11) 238 (17) 287 (17) 324 (17) 379 (17)

126 (9) 119 (7) 115 (6) 112 (5) 238 (17) 254 (15) 248 (13) 245 (11)

Table 5.7: Complexity given by polyDet: dωI , for ω = 2. The first line shows the complexity of the
algorithm with respect to the number of rounds of Anemoi, the second line shows the number of rounds
whose complexity is below the target security level.

70 Chapter 5 — Application to ANEMOI

Security 128 256

α 3 5 7 11 3 5 7 11

l = 1

26 21 19 16 53 44 39 33

28 23 21 18 56 46 41 35

27 20 - - 54 40 - -

l = 2

13 11 10 8 27 22 20 17

14 12 11 9 28 23 21 18

11 9 - - 22 18 - -

l = 3

9 7 7 6 18 15 13 11

10 8 7 6 19 16 14 12

7 6 - - 14 11 - -

Table 5.8: Minimum number of rounds required for Anemoi: SparseFGLM (1st line), polyDet (2nd line)
and linSeq (3rd line)

5.6.4 Suggested number of rounds

Thanks to all those results, we can suggest the minimum number of rounds of Anemoi to achieve the

claimed security of 128 and 256 bits. In particular, that value will be computed as follows:

min{N ∈ N : Calg(N) ≥ 2s} with s ∈ {128, 256}

for Calg ∈ {CFGLM , CpolyDet, ClinSeq}. As pointed out in Subsection 5.6.3, we believe it is better to use

ω = 2 to define the security of the primitive, as confirmed by the high sparsity of the multiplication ma-

trices involved in the computations of the univariate polynomials. Table 5.8 shows the minimum number

of rounds to reach the claimed security level towards the application of the deterministic SparseFGLM

algorithm, the polyDet and the linSeq method.

5.7 Experimental results

We experimentally test the methodologies in Section 5.5 on the ACICO Model applied to a small

version of Anemoi. In particular, those results where achieved for Anemoi over Kp with a 31-bits

prime p = 1481823929 on a machine with Intel Xeon(R) Gold 6342 CPU @ 2.80GHz (32 cores), 48GB

RAM and NVIDIA 48GB L40 GPU under Ubuntu 22.04 using SageMath [41], MSOLVE [6], Singular [17],

Macaulay2 [23], NTL [35] and FLINT [40]. Here, we present the experimental results and the derived

conjectures.

Comparison with previous works Previous works [29] [3] were able to apply their model to the case

l = 1 (Anemoi with 2 branches) without mentioning the possibility to extend the attack to more branches.

Due to their construction, PCICO and FCICO models are not extendible to more than 2 branches, giving

5.7 Experimental results 71

α = 3 α = 5 α = 7 α = 11

l = 1
TGB[ms] 2.16 (21) 2.33 (21) 2.12 (20) 1.94 (19)

dsolv 9 30 42 66

l = 2
TGB[ms] 4.57 (14) 4.39 (14) 3.83 (13) 4.02 (13)

dsolv 9 30 42 66

l = 3
TGB[ms] 11.0 (12) 8.79 (12) 8.74 (12) 8.49 (11)

dsolv 9 30 42 66

Table 5.9: For l = 1, 2, 3, theGDRL (if α = 3) andGWDRL
(if α = 5, 7, 11) computation time in millisecond

and the solving degree dsolv. We present the GB results with respect to the number of rounds of Anemoi
(in brackets), but we were able to compute the Gröbner basis for more than 100 rounds.

too high execution timings and complexities. Moreover, neither the Bariant et al. approach [3] is pos-

sible to extend to more than two branches due to the impossibility of finding valid (positive) monomial

weights for the generation of the FreeLunch system. Therefore, thanks to our methodology we were

able to (a.) precisely define the complexity of computing the GB for Anemoi (b.) reduce the complex-

ity of the first two steps of the attack (see Section 5.5) and, then, (c.) apply it to more than two branches.

GB computation One of the main advantages of the ACICO model is the possibility to efficiently

compute the Gröbner basis. As shown by Propositions 1 and 2, we precisely defined the complexity

of computing the GB for Anemoi. Table 5.9 shows the computation time (in milliseconds) of the GB

with respect to the standard number of rounds of Anemoi for l = 1, 2, 3 and α = 3, 5, 7, 11. It is

straightforward to notice how those results are confirming our complexity definition. Moreover, we were

able to compute the GB for more than 100 rounds. As a consequence, both theoretical results both

experimental results support our choice of making the security of Anemoi relying only on the second

step of the GB cryptanalysis methodology.

Univariate polynomial finding Tables 5.10, 5.11 and 5.12 show the experimental results for ACICO,

l = 1, 2, 3 and α = 3, 5, 7, 11. As pointed out, the generation of the univariate polynomial is the most

involving part of the attack, but it is interesting to notice the differences between the three approaches:

SparseFGLM , polyDet and Wiedemann algorithm. Due to the fact that our polynomials are extremely

sparse as well as the multiplication matrices, SparseFGLM and Wiedemann algorithm are performing

better than polyDet. As well explained in Section 4.2, both SparseFGLM both Wiedemann algorithm

rely on the sparsity of the involved multiplication matrices. Hence, to precisely define their complexity

we derived the following conjecture for α = 3, 5:

Conjecture 1. Sparsity of the multiplication matrices The level of sparsity of the multiplication matrices

of the input variables yi,0 for 1 ≤ i ≤ l, computed as Z/d2I where Z is the number of non-zero entries,

72 Chapter 5 — Application to ANEMOI

is approximately given by:

Sparsity(Ti) =

⎧⎨⎩0.9e−1.148N/l for α = 3

0.32e−1.06N/l for α = 5
(5.34)

Computing the multiplication matrix is one of the most involving parts. Being able to reduce the

complexity of this step would give us the possibility to refine our results, extending them to other values

of α. For cryptanalysis purposes we are not interested in finding the solutions of all the variables involved

in the system. As suggested by the CICO problem, we are interested in finding solutions for the input

variables. Therefore, applying the Wiedemann algorithm for each variable results in the possibility of

applying the attack to more rounds.

5.7 Experimental results 73

α N
Gröbner basis Univariate Poly. Factorization

dsolv TGB[s] dI TSparseFGLM [s] TpolyDet[s] TWiedemann[s] TFact[s]

3

2 9 0.0010 52 0.0237 0.0020 1.0502 0.0004

3 9 0.0005 53 0.0588 8.3710 3.3447 0.0235

4 9 0.0006 54 0.2866 1045.4280 6.8501 0.4097

5 9 0.00063 55 7.7925 20.7408 6.0211

6 9 0.00066 56 1008.2052 110.5109 128.1806

7 9 0.00076 57 750.8691 6443.1831

8 9 0.00078 58 1212.9214 14567.52

5

2 30 0.0012 72 2.6680 0.2355 0.2368 0.0012

3 30 0.0009 73 11.5976 239.9753 1.6871 0.4430

4 30 0.0010 74 132.9562 7256.5462 16.0431 28.0277

5 30 0.0011 75 - - 131.0137 278.0756

6 30 0.0012 76 - - 1104.3812 3273.5400

7

2 42 0.0013 92 0.0541 1.1463 0.4012 0.0033

3 42 0.0008 93 2.021 2348.871 4.7974 2.2697

4 42 0.0010 94 - - 47.0143 61.6649

5 42 0.0011 95 - - 1307.0560 903.4305

11

2 66 0.0012 132 0.0896 15.8898 0.8268 0.0741

3 66 0.0008 133 29.5011 5491.1795 14.9939 11.9790

4 66 0.0010 134 - - 214.0266 138.7288

Table 5.10: For p = 1481823929, l = 1, the computation times for the 3 steps in GB cryptanalysis
are listed. As dI grows, the SparseFGLM, polyDet and Wiedemann algorithm fails due to memory
constraint. For α = 3 the structure of the GB was obtained with DRL monomial ordering, whilst for
α = 5, 7, 11 the structure of the GB was obtained with WDRL.

74 Chapter 5 — Application to ANEMOI

α N
Gröbner basis Univ. Poly Factorization

dsolv TGB[s] dI TSparseFGLM [s] TpolyDet[s] TWiedemann[s] TFact[s]

3
2 9 0.00071 54 0.6711 1567.6331 8.6146 1.4307

3 9 0.00082 56 1258.0808 - 283.0214 269.6457

5 2 30 0.0013 74 185.3975 7389.7569 32.4342 23.8519

3 30 0.0014 76 - - 5349.7558 3104.4810

7 2 42 0.0013 94 722.2398 - 97.7862 65.0040

11 2 66 0.0013 134 - - 486.0422 141.8831

Table 5.11: For p = 1481823929, l = 2 and α = 3, the computation times for the 3 steps in GB
cryptanalysis are listed. For α = 3 the structure of the GB was obtained with DRL monomial ordering,
whilst for α = 5, 7, 11 the structure of the GB was obtained with WDRL.

α N
Gröbner basis Univ. Poly Factorization

dsolv TGB[s] dI TSparseFGLM [s] TpolyDet[s] TWiedemann[s] TFact[s]

3 2 9 0.00106 56 2072.0338 789.9852 422.6369

Table 5.12: For p = 1481823929, l = 3 and α = 3, the computation times for the 3 steps in GB
cryptanalysis are listed. For α = 3 the structure of the GB was obtained with DRL monomial ordering.

6
Conclusions

In this thesis we presented the foundations of algebraic cryptanalysis, both from a mathematical both

from a computational point of view, then, we provided an in-depth Gröbner basis cryptanalysis of

Anemoi, one of the most recent Arithmetization-Oriented primitives. The computational part is of high

relevance towards the application in the cryptanalysis context. Polynomials represent one of the main

tools and, due to the fact that we currently don’t know everything about them, they could represent a

dangerous attack vector for newer, and also traditional, ciphers. After a detailed walkthrough about the

Gröbner basis cryptanalysis methodology and the algorithms that can be used, we tested Anemoi a recent

permutation primitive that can be used both as a compression function both as a hash function. By

using our polynomial representation of Anemoi we construct a polynomial system ACICO corresponding

to the permutation function. Thanks to the structural properties of the polynomials in the Gröbner

basis we were able to show that this modelling choice makes the GB computation step “negligible” with

respect to the other steps of the attack, no matter the number of branches (l ≥ 1).

Additionally, the structural properties of the polynomials constituting the Gröbner basis (for Anemoi)

allowed us to prove the dimension of the quotient space K[x1, x2, . . . , xn]/I which was conjectured in [29].

As a result, we had the possibility to define the complexity of obtaining univariate polynomials which

is the other main step in the GB cryptanalysis methodology.

Towards obtaining univariate polynomials, we used efficient eigenvalue method with the aim of

solving the system of (polynomial) equations corresponding to the GB of Anemoi. More specifically,

we used Wiedemann algorithm to obtain the univariate polynomials, improving the existing attacks.

Moreover, we experimentally tested our methodology, showing how it led us to break more rounds with

respect to previous works. As a result, we defined the number of rounds required by the primitive to

guarantee a security of 128 and 256 bits.

The Gröbner basis cryptanalysis methodology that we presented can be applied to other Arithmetization-

Oriented primitives, such as Griffin and Poseidon. In particular, the application of the Wiedemann

algorithm, instead of using a naive application of basis conversion algorithms and determinant compu-

tation, can be extended to other primitives that show the same characteristic w.r.t the sparsity of the

multiplication matrices. Moreover, as done for Anemoi finding a good model can lead to the complete

bypass of the GB computation step of the methodology, and this works in general.

During the last years, algebraic attacks have gained more prominence in the cryptographic commu-

76 Chapter 6 — Conclusions

nity due to their application to AO primitives, as shown by this thesis. Owing to the fact that these

strategies did not pose any security threat against traditional block ciphers, the research on this topic

was proceeding slowly. However, because this new interest towards the application of algebraic geometry

in the context of cryptanalysis could provide newer insights, believing traditional ciphers to be secure

against this threat could be a huge mistake. In addition, FHE, MPC, ZK-proofs are becoming more

popular both from an academical point of view, both from an industrial point of view, due to the new

attention for privacy preserving technologies and zero-trust mechanisms.

A
FreeLunch attack against Anemoi

Definition 1 (FreeLunch System). Let P = {p1, . . . , pn} a sequence of polynomials in the ring

K[x1, . . . , xn]. We say that P is a FreeLunch System if there exist a valid monomial ordering ≺ and

integers (α1, α2, . . . , αn) such that for all i ∈ {1, n}, LM≺(pi) = xαi
i . Any monomial order that verifies

this property is called FreeLunch order.

A FreeLunch system P is a Gröbner Basis for the ideal I = ⟨P ⟩ with respect to any of its FreeLunch

orders. Moreover, I is zero-dimensional and the value of dI is simply the product of the integers

(α1, α2, . . . , αn). Moreover, permutation ciphers often show special structures which give the possibility

to convert them to Triangular systems and, then, to FreeLunch system.

Definition 2 (Triangular System). Let P = {p1, . . . , pn} a sequence of polynomials in the ring

K[x1, . . . , xn]. We say that P is a triangular system if there exist polynomials q1, . . . , qn, integers

(α1, α2, . . . , αn) and (c1, c2, . . . , cn) ∈ F \ {0} such that⎧⎨⎩pi = cix
αi
i + qi(x1, . . . , xi−1) for 2 ≤ i ≤ n

g = c1x
α1
1 + q1(x1, . . . , xn)

A triangular system is, by definition, a FreeLunch system, Therefore, finding a valid monomial

ordering for that triangular system corresponds to find a suitable FreeLunch order.

General inequalities for triangular orders From definition 2, we define the following inequalities

which guarantee that the generated monomial ordering is a triangular order ≺T .

wt(xi) >
wt(LM≺T (qi))

αi
for 1 ≤ i ≤ n

A.1 Freelunch system attack methodology

[3] shows how to exploit this structure to define a competitive method for finding solutions to x1. The

proof of the following theorem which will be used to define the attack methodology, is given in their

article.

78 Chapter A — FreeLunch attack against Anemoi

Theorem 1. Given a FreeLunch system P , a FreeLunch order ≺ and the multiplication matrix T1 of

the variable x1, there exists an algorithm to compute a solution for x1 with time complexity:

O

(︄
α1

(︄
n−1∏︂
i=1

αi

)︄ω)︄

Then, the methodology is defined as follows:

1) Compute the multiplication matrix T1 of the variable x1

2) Compute the determinant of the matrix x1I− T1

3) Factorize the obtained univariate polynomial

Complexity analysis As for the first step, it is hard to define its complexity. As shown by the exper-

iments, it can be costlier than the other two steps. The procedure returning the univariate polynomial

(the computation of the determinant) has a complexity of O(dIdω−1
1) with the algorithm of Labahn et

al. [30]. The last step deals with the factorization of a univariate polynomial of degree dI which costs

O(dI) (negligible w.r.t. the previous step).

A.2 Anemoi algebraic cryptanalysis through Freelunch systems

Following [3], as a starting point we will use the equations given by the PCICO defined in Subsection

5.4.1.

pi,r = E(si,r)− fi,r +Qγ(gi,r) = sαi,r + βg2i,r + γ − fi,r (A.1)

where pi,r ∈ Fp[y1,0, . . . , yl,0, s1,1, . . . , sl,1, . . . , s1,r−1, . . . , sl,r−1, si,r].

xi,N+1 := L(x1,N , x2,N , . . . , xl,N , y1,N , . . . , yl,N) = 0 (A.2)

where xi,N+1 ∈ Fp[y1,0, . . . , yl,0, s1,1, . . . , sl,1, . . . , s1,N , . . . , sl,N].
To make the system composed by those equations a FreeLunch system, we need to find suitable

monomial weights such that:

LM(pi,r) = sαi,r LM(xi,N+1) = yui,0

for each 1 ≤ i ≤ l and 1 ≤ r ≤ N , where u is an exponent as defined in a while.

A.2.1 Weights for pi,r

From Subsection 5.4.1 we know that deg(pi,r) = max{α, 2r}. In particular, we can define rα := min{r ∈
N | 2r ≥ α} to denote the first round such that the maximum degree of pi,r moves from α to 2r. For

each pi,r, we can say that:

deg(pi,r) =

⎧⎨⎩α for 1 ≤ r < rα

2r for rα ≤ r ≤ N

A.2 Anemoi algebraic cryptanalysis through Freelunch systems 79

Therefore, we can notice that:

LM(pi,r) =

⎧⎨⎩sαi,r for 1 ≤ r < rα

LM(Qγ(gi,r)) for rα ≤ r ≤ N

To discover what is the leading monomial of Qγ(gi,r) we need to understand what is the leading

monomial of xi,r−1 for each 1 ≤ i ≤ l. From Equation 5.8 we can say that the leading monomial of xi,r

is either s2i,r or LM(gi,rsi,r). In particular, taking into account the consideration given in Subsection

5.4.1:

LM(xi,r) =

⎧⎨⎩s2i,1 or si,1LM(gi,1) for r = 1

LM(gi,rsi,r) = si,rLM(gi,r) for 2 ≤ r ≤ N
(A.3)

As regards gi,r, we can say that its leading monomial depends on the leading monomials of x1,r−1, . . . , xl,r−1, y1,r−1, . . . , yl,r−1,

due to the application of the linear layer before the Flystel evaluation. Moreover, thanks to Equation

5.9 we know that deg(LM(xi,r−1)) > deg(LM(yi,r−1)). Hence,

LM(gi,r) = LM

(︄
l∑︂

i=1

kixi,r−1 +

l∑︂
i=1

biyi,r−1

)︄

where ki and bi are coefficients in Fp depending on the application of the linear layer L. There will

be more than one monomial with the maximum degree, then the leading monomial will depend on the

chosen monomial ordering. In general, by following the considerations above from the beginning to the

r-th round, the leading monomial of gi,r follows the given structure:

yt,in ·
r−1∏︂
j=1

sc,j

where t, c can be whatever value from 1 to l. To determine what is the leading monomial among those

lr possibilities, we would need to define a variable and a monomial ordering. Thanks to the statement

above, we are finally able to define LM(pi,1). For sake of simplicity, we will use LM(gi,r) = yi,0 ·
∏︁r−1
j=1 si,j .

LM(pi,r) =

⎧⎨⎩sαi,r for 1 ≤ r < rα

Qγ(yi,0 ·
∏︁r−1
j=1 si,j) = y2i,0 ·

∏︁r−1
j=1 s

2
i,j for rα ≤ r ≤ N

By considering that result, when we deal with a number of rounds greater or equal to rα, the

equations pi,r are not already in FreeLunch form. Than, we need to find positive variable weights such

that the weighted monomial ordering so defined makes sαi,r the leading monomial of each equation pi,r.

Therefore our weights must satisfy the following inequality:

α · wt(si,r) > 2 · (wt(yi,in) + wt(si,1) + · · ·+ wt(si,r−1)) (A.4)

for all 1 ≤ i ≤ l and for all 1 ≤ r ≤ N .

80 Chapter A — FreeLunch attack against Anemoi

A.2.2 Weights for xi,N+1

By Equation A.3 and the considerations on the leading monomial of gi,r we can say that:

LM(xi,r) =

⎧⎨⎩s2i,1 or si,1yi,0 for r = 1

LM(gi,rsi,r) = yi,0 ·
∏︁r
j=1 si,j for 2 ≤ r ≤ N

(A.5)

Now, we are considering xi,N+1 which, thanks to the linear layer, is a linear combination of all the

xi,N and yi,N for 1 ≤ i ≤ l. Therefore, its leading monomial is defined as in Equation A.5.

As a consequence, there is no possible choice of monomial ordering and weights where xi,r will have

a leading monomial in only yi,0. Moreover, by fixing a variable order and a monomial ordering, and by

considering that all the l last equations xi,N+1 will have the same monomials, their leading monomial

will always be the same. Bariant et al. [3] proposed a way to force the last equation to be in FreeLunch

form in the case l = 1. Unfortunately, that is not possible with l > 1 due to the impossibility of

cancelling high order terms. We will briefly present their technique, then we will show why it is not

exploitable for more than 2 branches.

A.2.3 Forcing the last equation to be in FreeLunch form

We will refer to the case of l = 1. In order to force the last equation to be in FreeLunch form, we

will multiply x1,N+1 by suitable monomials in s1,1, s1,2, . . . , s1,N that will lead to a reduction by the

polynomials p1,1, . . . , p1,N . This process will generate a new polynomial x∗1,N+1 whose leading monomial

will be only in y1,in. The new polynomial will have more solutions than the original one, but it will

share the ones of the original equation. From a mathematical point of view, given the ideal I generated

by the set of polynomials {p1,1, . . . , p1,N , x1,N+1} we will generate a new ideal J defined by the set of

polynomials {p1,1, . . . , p1,N , x∗1,N+1} such that V(I) ⊂ V(J). To do what we have said so far, we need

to define a way to predict the powers of s1,r we will use in the multiplication of x1,N+1 prior to the

reduction by p1,1, . . . , p1,N .

Definition 3. [3] We define two integer sequences {ui}0≤i≤r and {kj}1≤j≤r, where ur = 1 and the

remaining sequences are recursively defines as follows:

• ki is the unique integer 0 ≤ ki < α such that ki ≡ −ui mod α

• ui = ui+1 + 2 (ui+1+ki+1)
α

Whilst kj will represent the power of s1,j that we will use in the multiplication of x1,N+1 for all

{kj}1≤j≤N , ui will represent the power of the variable y1,in prior to the multiplication by ski1,i and the

following reduction. Moreover, notice that k0 is not defined, whilst u0 will represent the higher degree

reachable by the target variable y1,in after all the reductions. That is important because we need to

use u0 to define the last inequality and then the weights that gives the possibility to set yu01,in as the

leading monomial of x∗1,N+1 after all the reductions. But, to define that inequality, we need to figure out

what is the LM(x∗1,N+1) and, in particular, what is LM2(x
∗
1,N+1), that is the second monomial after the

leading one w.r.t the monomial ordering we are going to define and that we already partially defined in

the previous subsections with Equation A.4.

A.2 Anemoi algebraic cryptanalysis through Freelunch systems 81

A.2.4 Impossibility to extend the technique to more than 2 branches

The polynomials pi,r can always be made in FreeLunch form, which means that we are always able to

solve the corresponding inequalities. Unfortunately, the issue comes from the attempt to force the last l

equations to be in FreeLunch form. Due to the presence of the diffusion layer and the pseudo-hadamart

transform, there is no possible reduction which is able to remove monomials of the type sα−1
i,r s2i+1,r or

sα−1
i,r s2i−1,r which are created from the attempt to force the system to be in Freelunch form. Another

way to see the impossibility to apply such construction, is trying to define an inequality for each variable

yi,0 such that:

α · u0 · wt(yi,0) > wt(yi,in) + 2 · (wt(si,1) + · · ·+ wt(si,r−1)) (A.6)

for all 1 ≤ i ≤ l and for all 1 ≤ r ≤ N .

The so-defined system of inequalities has no solutions in R≥0 and, by Definition 11, a weighted

monomial order is valid only for values greater or equal to 0.

B
Additional Algebraic cryptanalysis

methods

B.1 Interpolation attack

Each symmetric cipher involves a non-linear operation which algebraically increases the degree of the

generated polynomials. If the round function, and in particular the non-linear part, can be expressed

as a low-degree polynomial, the interpolation attacks could act as an important security threat for the

analyzed primitive. As an example, if the ciphertexts generated by the primitive can be expressed as

evaluations of low-degree polynomials of the plaintext, then an attacker could obtain several plaintext-

ciphertext couples and interpolate the polynomial (e.g. through Lagrange interpolation). That polyno-

mial would be the algebraic representation of the primitive, meaning that all new plaintext-ciphertext

couples that are intercepted should satisfy the relation.

Let us assume to have multiple plaintext-ciphertext couples (p, c). Let p1, p2, . . . , pn be the binary

representation of the plaintext p, where n = log2(p). Hence, we can represent p as a multivariate

polynomial q(x) ∈ GF (2)[x1, . . . , xn] where xi is the i-th plaintext bit. The interpolation attack is

applicable if the non-linear order d of the ciphertext polynomial (from the reduced cipher) as a function

of the plaintext is low. Since d is low, the distinguisher can be used to recover the last round-key.

The interpolation attack is usually applied by using univariate polynomials. In this way p is expressed

as a polynomial q(x) ∈ GF (2n) of the plaintext bits. If the polynomial is sparse, or it has low degree,

given a collection of plaintext-ciphertext couples, one can construct that polynomial by interpolation.

This would generate a polynomial based encryption algorithm that resembles the original cipher without

knowing the secret key. As a consequence, the attacker can exploit the polynomial to recover the last

round key.

The attack can be generalized to deal with block of bits, meaning that each block of s bits would

be identified by a different variable of a multivariate polynomial. The higher-order differential attack

is a special case where s = m, the polynomials involved are univariate and the way of generating such

polynomial is slightly different.

84 Chapter B — Additional Algebraic cryptanalysis methods

B.2 Higher-order differential attack

As previously stated, the higher-order differential attack is a special case of the interpolation attack.

If the algebraic degree d of a function f is sufficiently low, then, if the sum of the evaluation of f on

all the elements of a certain affine vector space is 0, with high probability it is possible to recover the

correct value of the secret key. Finding such a distinguisher is possible if the non-linear transformation

has very low algebraic degree. For example, most of the proposed Arithmetization-Oriented primitives

generate very high degree, making the attack infeasible. To show how this attack works, we propose the

following example.

Example 1. In this example we are going to define the steps of the higher-order differential attack on

a toy SPN cipher. Consider a simple substitution-permutation network cipher P with block size of

2n bits. Assume the first half of those input bits (denoted as Ileft) to be constant and consider the

remaining n bits (denoted as Iright = (x1, x2, . . . , xn)) as the variables of the polynomials we are going

to consider. Each bit of the ciphertext C = (c1, c2, . . . , c2n), which we already know, can be expressed

as a multivariate polynomial pi ∈ F2[x1, x2, . . . , xn] for each 1 ≤ i ≤ 2n.

If deg(pi) ≤ d for all 1 ≤ i ≤ 2n, then, we can define Ld as the (d + 1)-dimensional subspace of Fn2
such that

∑︁
Iright∈Ld+1

p(Iright) = c, where c is a constant for any space parallel to Ld+1 and p is the

function which represents the cipher encryption up to the last but one round.

The vectors space Ld+1 can be represented as a full rank matrix M of dimension (d + 1) × n over

F2. Therefore, if and only if deg(p) ≤ d we can define

σ(w) =
∑︂

Iright∈Ld+1

p(Iright + w) = (0, 0, . . . , 0) for all w ∈ Fn2 .

If we are able to find such a zero distinguisher, we are able to find the correct key with high

probability. Let f be the round function and f−1 the corresponding inverse, a sketch of the process is

given in Algorithm 15.

Algorithm 15 Sketch of the higher-order differential attack. The attack can be performed by running
the algorithm with multiple values of w and then, compute the intersection between the found key sets.

procedure higher-order-attack(Ileft, w ∈ Fn2 ,M ∈ F(d+1)×n
2) ▷

ciphertexts = []
3: for a ∈ Fd+1

2 do
Ileft = aM + w
ciphertexts = ciphertexts + [(P (Ileft||Iright)]

6: possibleKeys = []
for k do ▷ All the possible keys

σw = 0
9: for c ∈ ciphertexts do

c̃ = f−1(k, c)
σw = σw + c

12: if σw = 0 then
possibleKeys = possibleKeys + [k]

return possibleKeys

Bibliography

[1] Martin R. Albrecht, Carlos Cid, Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger,

Christian Rechberger, and Markus Schofnegger. Algebraic cryptanalysis of stark-friendly designs:

Application to marvellous and mimc. In Steven D. Galbraith and Shiho Moriai, editors, Advances

in Cryptology - ASIACRYPT 2019 - 25th International Conference on the Theory and Application

of Cryptology and Information Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part III,

volume 11923 of Lecture Notes in Computer Science, pages 371–397. Springer, 2019.

[2] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. On the complexity of the f5 gröbner basis

algorithm. Journal of Symbolic Computation, 70:49–70, 2015.

[3] Augustin Bariant, Aurélien Boeuf, Axel Lemoine, Irati Manterola Ayala, Morten Øygarden, Léo

Perrin, and H̊avard Raddum. The algebraic freelunch efficient gröbner basis attacks against

arithmetization-oriented primitives. Cryptology ePrint Archive, Paper 2024/347, 2024. https:

//eprint.iacr.org/2024/347.

[4] Elwyn R Berlekamp. Factoring polynomials over large finite fields. Mathematics of computation,

24(111):713–735, 1970.

[5] Elwyn R Berlekamp. Algebraic coding theory (revised edition). World Scientific, 2015.

[6] Jérémy Berthomieu, Christian Eder, and Mohab Safey El Din. msolve: A Library for Solving Poly-

nomial Systems. In 2021 International Symposium on Symbolic and Algebraic Computation, 46th

International Symposium on Symbolic and Algebraic Computation, pages 51–58, Saint Petersburg,

Russia, July 2021. ACM.

[7] Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen, Vesselin Velichkov,

and Danny Willems. New design techniques for efficient arithmetization-oriented hash functions:

Anemoi permutations and Jive compression mode. In Helena Handschuh and Anna Lysyanskaya,

editors, CRYPTO 2023, Part III, volume 14083 of LNCS, pages 507–539, Santa Barbara, CA, USA,

August 20–24, 2023. Springer, Heidelberg, Germany.

[8] Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen, Vesselin Velichkov, and

Danny Willems. New design techniques for efficient arithmetization-oriented hash functions:anemoi

permutations and jive compression mode. Cryptology ePrint Archive, Paper 2022/840, 2022.

[9] Johannes Buchmann, Andrei Pyshkin, and Ralf-Philipp Weinmann. A zero-dimensional gröbner

basis for aes-128. In Fast Software Encryption: 13th International Workshop, FSE 2006, Graz,

Austria, March 15-17, 2006, Revised Selected Papers 13, pages 78–88. Springer, 2006.

https://eprint.iacr.org/2024/347
https://eprint.iacr.org/2024/347

86 Bibliography

[10] Stanislav Bulygin and Michael Brickenstein. Obtaining and solving systems of equations in key

variables only for the small variants of aes. Mathematics in Computer Science, 3:185–200, 2010.

[11] Alessio Caminata and Elisa Gorla. Solving degree, last fall degree, and related invariants. Cryp-

tology ePrint Archive, Report 2021/1611, 2021. https://eprint.iacr.org/2021/1611.

[12] Alessio Caminata and Elisa Gorla. Solving Multivariate Polynomial Systems and an Invariant from

Commutative Algebra, page 3–36. Springer International Publishing, 2021.

[13] David G Cantor and Hans Zassenhaus. A new algorithm for factoring polynomials over finite fields.

Mathematics of Computation, 36(154):587–592, 1981.

[14] Stéphane Collart, Michael Kalkbrener, and Daniel Mall. Converting bases with the gröbner walk.

Journal of Symbolic Computation, 24(3-4):465–469, 1997.

[15] David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms. Undergraduate

Texts in Mathematics. Springer, fourth edition, 2015.

[16] David A. Cox, John B. Little, and Donal O’Shea. Using Algebraic Geometry, volume 185 ofGraduate

Texts in Mathematics. Springer, first edition, 1998.

[17] Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans Schönemann. Singular 4-3-0

— A computer algebra system for polynomial computations. http://www.singular.uni-kl.de,

2022.

[18] Michele Elia and Davide Schipani. Improvements on cantor-zassenhaus factorization algorithm.

arXiv preprint arXiv:1012.5322, 2010.

[19] Jean Charles Faugere. A new efficient algorithm for computing gröbner bases without reduction to

zero (f 5). In Proceedings of the 2002 international symposium on Symbolic and algebraic compu-

tation, pages 75–83, 2002.

[20] Jean-Charles Faugere, Patrizia Gianni, Daniel Lazard, and Teo Mora. Efficient computation of zero-

dimensional gröbner bases by change of ordering. Journal of Symbolic Computation, 16(4):329–344,

1993.

[21] Jean-Charles Faugère and Chenqi Mou. Sparse fglm algorithms. Journal of Symbolic Computation,

80:538–569, May 2017.

[22] Jean-Charles Faugére. A new efficient algorithm for computing gröbner bases (f4). Journal of Pure

and Applied Algebra, 139(1):61–88, 1999.

[23] Daniel R. Grayson and Michael E. Stillman. Macaulay2, a software system for research in algebraic

geometry. Available at http://www2.macaulay2.com.

[24] Joseph L. Greathouse and Mayank Daga. Efficient sparse matrix-vector multiplication on gpus

using the csr storage format. In SC ’14: Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, pages 769–780, 2014.

https://eprint.iacr.org/2021/1611
http://www.singular.uni-kl.de
http://www2.macaulay2.com

Bibliography 87

[25] Gavin Harrison, Jeremy Johnson, and B. David Saunders. Probabilistic analysis of wiedemann’s

algorithm for minimal polynomial computation. Journal of Symbolic Computation, 74:55–69, 2016.

[26] Jérémy Jean. TikZ for Cryptographers. https://www.iacr.org/authors/tikz/, 2016.

[27] Erich Kaltofen and Victor Shoup. Subquadratic-time factoring of polynomials over finite fields. In

27th ACM STOC, pages 398–406, Las Vegas, NV, USA, May 29 – June 1, 1995. ACM Press.

[28] Walter Keller-Gehrig. Fast algorithms for the characteristics polynomial. Theoretical Computer

Science, 36:309–317, 1985.

[29] Katharina Koschatko, Reinhard Lüftenegger, and Christian Rechberger. Exploring the six worlds

of gröbner basis cryptanalysis: Application to anemoi. Cryptology ePrint Archive, Paper 2024/250,

2024. https://eprint.iacr.org/2024/250.

[30] George Labahn, Vincent Neiger, and Wei Zhou. Fast, deterministic computation of the hermite

normal form and determinant of a polynomial matrix, 2017.

[31] Vincent Neiger and Clément Pernet. Deterministic computation of the characteristic polynomial

in the time of matrix multiplication. Journal of Complexity, 67:101572, 2021.

[32] Tomáš Oberhuber, Atsushi Suzuki, and Jan Vacata. New row-grouped csr format for storing the

sparse matrices on gpu with implementation in cuda, 2010.

[33] Shojiro Sakata. The BMS Algorithm, pages 143–163. Springer Berlin Heidelberg, Berlin, Heidelberg,

2009.

[34] Claude E. Shannon. Communication theory of secrecy systems. Bell System Technical Journal,

28(4):656–715, 1949. See, in particular, page 704.

[35] Victor Shoup. Ntl: A library for doing number theory. https://libntl.org/.

[36] Victor Shoup. Factoring polynomials over finite fields: Asymptotic complexity vs. reality. 1993.

[37] Victor Shoup. Ntl vs flint. https://libntl.org/benchmarks.pdf, 2021.

[38] Matthias Johann Steiner. Solving degree bounds for iterated polynomial systems. IACR Trans.

Symmetric Cryptol., 2024(1):357–411, 2024.

[39] Arne Storjohann. High-order lifting and integrality certification. Journal of Symbolic Computation,

36(3-4):613–648, 2003.

[40] The FLINT team. FLINT: Fast Library for Number Theory, 2023. Version 3.0.0, https:

//flintlib.org.

[41] The Sage Developers. SageMath, the Sage Mathematics Software System (Version x.y.z), YYYY.

https://www.sagemath.org.

[42] Ralf-Philipp Weinmann. Evaluating algebraic attacks on the aes. Diplom thesis, Technische Uni-

versität Darmstadt, 2003.

https://www.iacr.org/authors/tikz/
https://eprint.iacr.org/2024/250
https://libntl.org/
https://libntl.org/benchmarks.pdf
https://flintlib.org
https://flintlib.org

88 Bibliography

[43] D. Wiedemann. Solving sparse linear equations over finite fields. IEEE Transactions on Information

Theory, 32(1):54–62, 1986.

[44] Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In

Howard J. Karloff and Toniann Pitassi, editors, 44th ACM STOC, pages 887–898, New York,

NY, USA, May 19–22, 2012. ACM Press.

	Introduction
	Outline

	Mathematical foundations
	Affine Varieties
	Ideals
	Polynomials: different view points
	Gröbner basis
	Regular systems of polynomials
	Variables in Noether position

	Computational algebra
	Gröbner basis computation
	Buchberger's algorithm
	F4
	F5

	Gröbner basis conversion: from graded to LEX monomial order
	FGLM
	SparseFGLM

	Finding the variety
	Change of order
	Resultant technique
	Eigenvalue methods

	On the computation of the multiplication matrices

	Gröbner basis cryptanalysis
	Computing a Gröbner basis
	Obtaining univariate polynomials
	FGLM
	Eigenvalue method

	Factoring polynomials or root finding

	Application to ANEMOI
	The primitive
	Anemoi rounds
	Modes of operation
	Modelling phase
	PCICO Model
	FCICO Model
	ACICO model

	Gröbner basis cryptanalysis against Anemoi
	Gröbner basis for Anemoi
	Univariate polynomial finding
	Polynomial Factorization or Root Finding

	Theoretical results
	Gröbner basis computation complexity
	Univariate polynomial finding complexities
	Design choices (conservative approach)
	Suggested number of rounds

	Experimental results

	Conclusions
	FreeLunch attack against Anemoi
	Freelunch system attack methodology
	Anemoi algebraic cryptanalysis through Freelunch systems
	Weights for pi,r
	Weights for xi,N+1
	Forcing the last equation to be in FreeLunch form
	Impossibility to extend the technique to more than 2 branches

	Additional Algebraic cryptanalysis methods
	Interpolation attack
	Higher-order differential attack

